
 first published online 18 January 2012, doi: 10.1098/rsfs.2011.00922 2012 Interface Focus
 
Tomonari Dotera, Masakiyo Kimoto and Junichi Matsuzawa
 
Hard spheres on the gyroid surface
 
 

References

http://rsfs.royalsocietypublishing.org/content/2/5/575.full.html#related-urls
 Article cited in:

 
http://rsfs.royalsocietypublishing.org/content/2/5/575.full.html#ref-list-1

 This article cites 20 articles, 1 of which can be accessed free

Subject collections
 (11 articles)chemical physics   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsfs.royalsocietypublishing.org/subscriptions go to: Interface FocusTo subscribe to 

 on September 18, 2014rsfs.royalsocietypublishing.orgDownloaded from  on September 18, 2014rsfs.royalsocietypublishing.orgDownloaded from 

http://rsfs.royalsocietypublishing.org/content/2/5/575.full.html#ref-list-1
http://rsfs.royalsocietypublishing.org/content/2/5/575.full.html#related-urls
http://rsfs.royalsocietypublishing.org/cgi/collection/chemical_physics
http://rsfs.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royfocus;2/5/575&return_type=article&return_url=http://rsfs.royalsocietypublishing.org/content/2/5/575.full.pdf
http://rsfs.royalsocietypublishing.org/subscriptions
http://rsfs.royalsocietypublishing.org/
http://rsfs.royalsocietypublishing.org/


Interface Focus (2012) 2, 575–581

 on September 18, 2014rsfs.royalsocietypublishing.orgDownloaded from 
*Author for c

One contribu
topological co

doi:10.1098/rsfs.2011.0092
Published online 18 January 2012

Received 1 O
Accepted 12 D
Hard spheres on the gyroid surface
Tomonari Dotera1,*, Masakiyo Kimoto1 and Junichi Matsuzawa2

1Department of Physics, Kinki University, Higashi-Osaka 577-8502, Japan
2Department of Mathematics, Nara Women’s University, Nara 630-8506, Japan

We find that 48/64 hard spheres per unit cell on the gyroid minimal surface are entropically
self-organized. Striking evidence is obtained in terms of the acceptance ratio of Monte Carlo
moves and order parameters. The regular tessellations of the spheres can be viewed as hyper-
bolic tilings on the Poincaré disc with a negative Gaussian curvature, one of which is,
equivalently, the arrangement of angels and devils in Escher’s Circle Limit IV.

Keywords: gyroid surface; hard spheres; hyperbolic tiling; ABC star polymer;
bicontinuous phase; fluid–solid transition
1. INTRODUCTION

What is the regular arrangement of spheres when a
surface is curved? On a flat plane, the hexagonal (equi-
lateral–triangular) arrangement is ubiquitous from
microscopic objects (e.g. electrons, atoms and molecules)
to mesoscopic objects (e.g. liquid crystals, polymers
and colloidal particles). The arrangement stems from
the densest packing of hard spheres, space division or
interactions between particles; for instance, the Coulom-
bic force between electrons organizes the Wigner crystal.
For surfaces with positive Gaussian curvatures, remark-
able arrangements are observed in fullerenes and
icosahedral capsids. Furthermore, the distribution pro-
blem of electrons on a sphere has been considered for
many years as the ‘Thomson problem’ [1]. In contrast,
a regular arrangement on a saddle-shaped (hyperbolic)
surfacewithnegative curvatures has notbeen identified in
soft materials; one regular arrangement so far discovered
is in inorganic mesoporous materials [2].

Nearly 30 years ago, Rubinstein & Nelson [3] addressed
the problem of hard discs on surfaces with constant nega-
tive curvatures as an analogue of frustrated sphere packing
in three-dimensional space. Furthermore, Modes &
Kamien [4] calculated virial coefficients of hard discs on
surfaces with constant negative curvatures to determine
the equation of states. Unfortunately, however, a plane
with a constant negative curvature mathematically
cannot be realized in Euclidian three-dimensional space.
Instead of constant negative curvatures, triply periodic
saddle-shaped surfaces with non-positive curvatures such
as gyroid [5], diamond and primitive surfaces are found
in various soft materials such as biological lipids, sur-
factants, mesoporous materials, and block copolymers
[6–9]. Recently, it was found that polyisoprene spheroids
spread over a polystyrene gyroidal membrane in an ABC
star block copolymer melt [10]. Moreover, regulated mem-
branes can act as scaffolds to construct more complex
structures [11,12]. Therefore, it is worth studying regular
orrespondence (dotera@phys.kindai.ac.jp).
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arrangements on such triply periodic saddle-shaped
surfaces [13].

On a flat plane, a fluid–solid transition occurs even for
the purely hard-sphere potential because of the excess
entropy of the regular arrangement [14]. Namely, above
a certain critical density, the crystalline arrangement of
spheres gains more entropy than the random arrangement
gains. Is there a similar transition on the gyroid surface?
Here, we report the results of Monte Carlo simulations of
entropy-driven order–disorder transitions on the surface,
and propose a regular arrangement on the gyroid surface.
2. MONTE CARLO SIMULATION

2.1. Method

We consider hard spheres whose centres are confined in a
rigid gyroidal membrane. Thewell-known approximation
form of the gyroid surface is shown by

gðrÞ ¼ sin x cos y þ sin y cos z þ sin z cos x; ð2:1Þ

where we omit a factor 2p/a for x, y and z [15]. Hereafter,
we choose the lattice constant a ¼ 1. For simulations, we
employ a gyroid membrane jg(r)j � 0.1, whose bound-
aries are given by g(r) ¼ 20.1 (green) and g(r) ¼ 0.1
(red) as shown in figure 1.

Monte Carlo simulations are conducted with sizes (ha,
ka, la), where 1 � h, k, l � 3. We assign N (N ¼ 48 2 64)
to the number of hard spheres per unit cell, and the total
number of spheres M in a simulation box with (h, k, l ) is
M ¼ hklN. Periodic boundary conditions for x, y and z
directions are exerted. We prepare M spheres whose
centres are within jg(r)j � 0.1 without hard contact.
This condition is easily achieved when the radius is small.

The Monte Carlo procedure is as follows. (i) Select a
sphere randomly. (ii) Generate a trial move within
a box whose sizes Dx, Dy and Dz ¼+ 0.0075 by the
uniform distributions. (iii) Reject the trial move if
jg(r)j. 0.1 or there is any hard contact with other
spheres; if not, accept the move. (iv) Return to (i).
(v) Record the acceptance ratio and the value of an
order parameter. At each radius, 106 Monte Carlo
This journal is q 2012 The Royal Society
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Figure 1. Gyroidal surfaces with g(r) ¼ 20.1 (green) and
g(r) ¼ 0.1 (red). The centres of spheres are confined between
the surfaces for simulations.
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steps are carried out. (vi) Change the radius of spheres
upward; the increment is 0.0001. For N ¼ 48 and N ¼
64, decreasing paths from regular arrangements are
also performed.

Let us make a few remarks. (i) The principle of detailed
balance of Monte Carlo moves is guaranteed by the above
procedures. (ii) The distance between two spheres is
measured in terms of the three-dimensional Euclidean dis-
tance, not the geodesic distance on the hyperbolic surface,
i.e. we simulate hard spheres not discs. (iii) The thickness
of the membrane is not exactly uniform, but it is thinner
than the radii under consideration. Thus, we presume that
this does not affect the key feature of the results.

In order to see order–disorder transitions for N ¼ 48
and N ¼ 64, we measure order parameters h(r) as a
function of radius r defined by

hðrÞ ¼ 1
M

XM
i¼1

f ðriÞ
* +

;

where the sum is taken over all spheres in question, and
k...l implies the Monte Carlo average. The function f(r)
for N ¼ 48 is f48(r), which is a function of the position of
sphere centres, shown by

f48ðrÞ ¼ sin 2x sin 2y sin 4z þ sin 2x sin 4y sin 2z

þ sin 4x sin 2y sin 2z:

The absolute value of this function takes a large value
when the positions of the spheres are in regular arrange-
ment. Technically, the function f48(r) is generated by
the Fourier transform of all generic points of the
space group I�43d for the (h, k, l ) ¼ (4, 2, 2) peak,
and thus are invariant under the operations of I�43d
[16]. In figure 2, level set surfaces defined by
f48(r) ¼+0.8 are displayed, together with the regular
arrangement. There are two choices of regular arrange-
ment for N ¼ 48, which can be expressed by the sign of
the function. As shown in figure 2, the regular positions
Interface Focus (2012)
match well with those of the level surfaces. We note that
equation (2.1) is obtained from I4132 and (h, k, l )¼
(2, 1, 1) in the same way as mentioned above [15]. Since
the regular positions for N ¼ 64 are divided into two sym-
metrically inequivalent groups, a simple function as good
as f48(r) could not be constructed. Thus, we temporary
calculate the order parameter by using

f64ðrÞ ¼ ðcos 4x þ cos 4y þ cos 4z þ cos x sin y sin 2z

þ cos y sin z sin 2x þ cos z sin x sin 2yÞ2;

where the first three terms express Wyckoff position
16a sites and the last three terms express 48g sites for
Ia�3d. It turns out that the function is useful near the
transition region.
2.2. Results

The existence of a transition is judged by whether or
not there is a jump in the acceptance–ratio curve. We
have obtained sound evidence for N ¼ 64. Figure 3a dis-
plays the acceptance ratio of Monte Carlo moves for the
system with (h, k, l ) ¼ (2, 2, 3); namely, 768 (64/per
unit cell) hard spheres whose centres are on the
gyroid surface. Upon increasing the radius of spheres,
the curve basically decreases because of the increase
in contacts. However, at about r ¼ 0.105, the ratio
abruptly jumps up about 0.08. This is the transition
from the disordered state to the ordered state. We
render the order parameter h(r) in figure 3b, which
shows a jump at the same radius. When starting from
a regular structure described in §3, both upward and
downward curves trace the same curve above r �
0.106, then the downward curve exceeds the transition
point at r ¼ 0.105 like superheating. The curve shows
an abrupt downturn at approximately r ¼ 0.101. This
hysteresis is typical evidence of the first-order tran-
sition. We illustrate a snapshot of the result just
above the transition in figure 4a. Note that we have
observed jumps for the simulation boxes with (h, k,
l ) ¼ (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, ,2, 2), (1, 1, 3) (1,
2, 3), (2, 2, 3), and (1, 3, 3). In the series, the upward
transition radius turns out to increase a little with the
size of boxes tending to converge, while the downward
transition radius is almost constant. The box size
seems to be limited by simulation time.

In the case of N ¼ 48, however, we have seen tran-
sitions for (h, k, l ) ¼ (1, 1, 1) and (1, 1, 3). Using our
computational power, we find that the transition is
not easily accessible to us. As we have mentioned,
there are two possible regular configurations for N ¼
48, which may cause the difficulty. Therefore, we have
added a solid region (green shaded box) as shown in
figure 4b for (hkl) ¼ (2, 3, 3) to enhance the transition.
The spheres in the region (0 � z , 1) are fixed on regu-
lar sites that acted as a solid interface. As shown in
figure 3c, it exhibits an entropy-driven fluid–solid tran-
sition when the radius of spheres was greater than
approximately 0.118 in the unit of the lattice constant.
In figure 3d, the order parameter measured in the region
(1.5 � z , 2.5) is a monotonically increasing function
of sphere radius and the maximum value is 1.473.
Figure 4b displays self-organized 864 (48/per unit

http://rsfs.royalsocietypublishing.org/
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Figure 2. Transparent spheres indicate two types of regular arrangement for N ¼ 48: (a) minus and (b) plus. The level surfaces
f48(r) ¼ 20.8 (in yellow) and f48(r) ¼ 0.8 (in pink) are superimposed.
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Figure 3. Plots of the acceptance ratio (AR) and h(r) as functions of sphere radius. (a) AR and (b) h(r) for an N ¼ 64 system with
(h, k, l ) ¼ (3, 2, 2). (c) AR and (d) h(r) for an N ¼ 48 system with (3, 3, 2). (a–d) Solid line, up; dashed line, down.
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Figure 4. Self-organized spheres on the gyroid surface for
(a) an N ¼ 64 system with (h, k, l ) ¼ (3, 2, 2), and (b) an
N ¼ 48 system with (h, k, l ) ¼ (3, 3, 2). These configurations
correspond to (a) (36; 32.4.32.4) and (b) (33.4.3.4). In (b) one-
third of the spheres at the bottom (shaded by green) are fixed
as a solid region.
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cell) hard spheres. Without the solid region, we have
found random configurations frustrated with two (þ
and 2) tilings, which end up with glassy states.

It turns out that jumps seem to exist for N ¼ 48, 52,
59, 60, 61, 62, 63 and 64 in the case of the smallest
box (1, 1, 1), although curves fluctuate considerably
at the transition regions. We have conducted a systema-
tic investigation and found that, except for (1, 1, 1),
there is no order–disorder transitions in the range of
48 , N , 64.
3. HYPERBOLIC TILING

To analyse tessellations on the gyroid surface, we use
hyperbolic tiling [17–21]. A hyperbolic tiling is the
Interface Focus (2012)
hyperbolic analogue of a tiling on a plane, and is usually
depicted on the Poincaré disc representing hyperbolic
geometry: a household example is Escher’s enchanting
series of artworks Circle Limit. More than two decades
ago, Charvolin and Sadoc pointed out that the Poincaré
disc in figure 5 tiled by (p/2, p/4, p/6)-triangles is
group-theoretically related to the gyroid surface. The
dodecagonal region within 12 thick curves in figure 5
can be conformally mapped upon the gyroid surface
and cover half the area of the surface in a unit cell.
A useful fact is that the symmetry operation of Ia�3d
is lifted to the orientation-preserving group action
in figure 5.

We propose three regular arrangements: (1) a mono-
hedral triangular tiling (36; 38); (2) an Archimedean
tiling (33.4.3.4) [22]; and (3) a tiling (36; 32 .4.32 .4) con-
sisting of 40, 48 and 64 vertices per unit cell on the gyroid
surface. The set of integers (n1 . n2 . n3 . . . .) denotes
tiling of a vertex type in the way that n1-gon, n2-gon
and n3-gon, . . . meet consecutively on each vertex, and
superscripts are employed to abbreviate when possible.
A set of integers such as (36; 38) denotes a tiling composed
of two vertex types 36 and 38, for instance. We presume
that these tilings are hyperbolic extensions of the flat
plane tessellation (36).

(1) Vertex positions of hyperbolic monohedral (36; 38)
tiling are located at the site symmetry points, :�3:
and �4:: of space group Ia�3d (no. 230). The corre-
sponding points are denoted as 16a and 24d sites,
representing multiplicity and the Wyckoff letter.
The red and yellow circles in figure 5 correspond
to Wyckoff positions of Ia�3d, 16a and 24d, respect-
ively, whose positions are geometrically monkey
and horse saddle points of the gyroid surface. The
space group of (36; 38) is Ia�3d (no. 230).

(2) Each centre of shaded triangles made by one 16a
and two 24d positions corresponds to a vertex of
a (33 .4.3.4) tiling (figure 5a). Since the mapping
preserves local connectivity, every vertex of
(33.4.3.4) tiling has six neighbours and the same
local environment. Thus, we call it Archimedean
tiling even for hyperbolic geometry. The whole
area is divided into alternating white and grey
regions in figure 5a, and correspondingly the inver-
sion symmetry of Ia�3d is broken. This procedure
enables us to find a curious coincidence between
the tessellation of green circles in figure 5a and
that of angels (or devils) in Escher’s Circle
Limit IV. In the three-dimensional space, the
positions are (0.576, 0.386, 0.554) and its
symmetry equivalents. Remarkably, the distance
between the nearest spheres is the same. Forty-
eight vertex positions of the tiling in figure 6a,b
are generated by symmetry operations of space
group I�43d (no. 220), which is one of the cubic sub-
groups of Ia�3d, but different from I41�32 (no. 214)
associated with the single-gyroid phase.

(3) The space group of (36; 32.4.32.4) is Ia�3d. The tiling
composed of 64 vertices per unit cell is shown in
figure 6c,d. Notice that the tiling consists of two
types of vertices: one of which is 16a, a site sym-
metry point :�3: of space group Ia�3d; the other

http://rsfs.royalsocietypublishing.org/
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Figure 5. Poincaré disc tiled with (p/2, p/4, p/6)-triangles (halves of white or shaded ones). The dodecagonal region within 12
thick curves can be conformally mapped on the gyroid surface and cover half the area of the surface in a unit cell. Then red, yellow
and blue circles correspond to Wyckoff positions of Ia�3d, 16a, 24d and 48g, respectively. (a) Green open circles in shaded triangles
correspond to vertices of the (33.4.3.4) tiling (blue dotted lines), corresponding to the N ¼ 48 system. (b) Red (36) and blue
(32.4.32.4) circles correspond to vertices of the (36; 32.4.32.4) tiling (green dotted lines), corresponding to the N ¼ 64 system.

(a) (b)

(c) (d )

Figure 6. (a,b) (33.4.3.4) Archimedean tiling with 48 vertices per unit cell, in a two-periodic cell viewed from (a) [111] and (b) [100]
directions. (c,d) (36; 32.4.32.4) tiling with 64 vertices per unit cell, in a two-periodic cell viewed from (c) [111] and (d) [100]
directions.
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type is 48g, a site symmetry point ..2; here, the pos-
ition is precisely given by ð18; y; �y þ 1

4Þ with y ¼
0.337 [23] and its symmetry equivalents. Notice
that the 16a points are surrounded by six isosceles
triangles (not equilateral triangles); thus, the hexa-
gon consisting of the six triangles is not flat as
shown in the central part of figure 6c.
4. DISCUSSION

Remarkably, the entropy-driven transition of hard
spheres on the gyroid surface occurs. Because the accep-
tance ratio only reflects local entropy, it is not the total
configurational entropy. However, since there is no
energetic term, the jump in the ratio implies entro-
pic ordering. This kind of entropic-ordering principle
prevails among many soft-matter systems.

Why do N ¼ 48 and N ¼ 64 systems order? For
N ¼ 48, the property of equidistance (0.259 in the
unit of the lattice constant) seems to be advantageous
to entropic ordering, because the same free volume for
all spheres gives the maximum entropy when it is
assumed that each sphere is confined in the Voronoi
cell, although the relation between the free-volume
cell and the Voronoi cell is not straightforward in the
presence of a curved background [13]. Furthermore,
there exist a point and its symmetry equivalents on
the gyroid surface calculated even by the Weier-
strass–Enneper representation such that all edge
lengths take the same value [22]. The same property
holds for N ¼ 64, since the edge–length difference is
within 1.1 per cent (the equidistant points are given
by y ¼ 5/16 for 48g sites, but not on the gyroid surface).
Because of this geometric condition, the symmetry gov-
erns the self-organization for N ¼ 48 and N ¼ 64. In
future, it will be interesting to see the relation between
the packing fractions of spheres (or discs) at transitions
and those of the densest packing for a given N.

We have elucidated that the regular tessellations of the
spheres can be viewed as hyperbolic tilings on the Poin-
caré disc or regular tiling structures in the Euclidean
space. We emphasize that, as investigated by several
researchers, the Poincaré disc and three-dimensional
nets are useful to understand the symmetry and the regu-
lated structures on the gyroid surface. We point out that
adding squares in triangle tilings is a plausible way to
form regular structures relating to the gyroid structure.
Squares are not so unrealistic because square–triangle
tilings have been observed in ABC star block terpolymers
[24,25]; as mentioned above, the monohedral tiling
(36;38) is possible, though. In addition, another Archime-
dean (37) net is possible; however, when the distance is
the same, it contains tetrahedrons and it is not on the
gyroid surface.

We hope that this study may hint at why the hyper-
bolic tiling structure can form in an ABC star block
copolymer melt, and we consider that the new tiling
structures obtained are plausible structural candidates.

This work was supported by the Grant-in-Aid for Scientific
Research (C) (no. 22540375) from JSPS, Japan, and the
Grant-in-Aid for Scientific Research on Priority Areas
Interface Focus (2012)
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