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High Genus Periodic Gyroid Surfaces of Nonpositive Gaussian Curvature
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In this paper we present a novel method for the generation of periodic embedded sur-
faces of nonpositive Gaussian curvature. The structures are related to the local minima of
the scalar order parameter Landau-Ginzburg Hamiltonian for microemulsions. The method is
used to generate six unknown surfaces ofIa3d symmetric (gyroid) of genus 21, 53, 69, 109,
141, and 157 per unit cell. All of them but that of genus 21 are most likely the mini-
mal surfaces. The Schoen-Luzzati gyroid minimal surface of genus 5 (per unit cell) is also
obtained.

PACS numbers: 61.20.–p, 02.40.–k, 64.75.+g, 68.10.–m
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The surfactant molecules which are the main ingredie
of soaps and detergents have the ability to solubilize
in water, two liquids which in the binary mixture at nor
mal conditions are immiscible. This ability stems from
their chemical structure; a surfactant molecule has po
and nonpolar segments at two ends and thus is simulta
ously hydrophobic and hydrophilic. The term amphiphil
(from the Greek work for loving both) molecule is use
since one end (polar) of the molecule is well solubilized
water while the other (nonpolar) is in oil. Hence the mo
ecule preferably stays at the oil-water interface, forming
monolayer. At high concentration of surfactant the phy
ical interface made of these molecules orders, formi
periodic structures of various symmetries. Similar beha
ior is observed in systems of biological molecules (lipid
which in water solutions self-assemble into bilayers.
1967–68 Luzzatiet al. [1–3] observed that the type o
ordering in the lecithin-water and lipid-water systems ca
not be described by the arrangement of simple surfact
aggregates such as cylinders, planes, or spheres. T
observed the cubic bicontinuous phase of theIa3d sym-
metry (gyroid) where the lipid bilayers formed a highl
curved smooth (embedded) surface of the same sym
try. Such surface divides the volume into two disjoin
subvolumes. The NMR, SAXS (small angle x-ray scatte
ing), and surfactant concentration measurements indic
that these surfaces closely resemble triply periodic m
imal surfaces [4–7], i.e., surfaces characterized by z
mean curvature at every point. The latter belongs to t
broader class of periodic surfaces of nonpositive Gau
ian curvature. Since the discovery of minimal period
surfaces in 1865 by Schwarz only one periodic embe
ded gyroid surface of cubic symmetry and genus 5 (p
unit cell) has been discovered and fully characterized [
Apart from that six more ofPn3m and Im3m symmetry
and known, all of low genus.Here we present the genera
method which can be used to generate periodic surface
nonpositive Gaussian curvature. We prove the efficien
of this method by generating six new gyroid structures
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genus 21, 53, 69, 109, 141, and 157. All these surfa
but that of genus 21 are minimal; we have also generat
the Schoen-Luzzati gyroid minimal surface of genus 5 p
unit cell.

We point out that the unique characterization of th
periodic surfaces using standard x-ray scattering meth
is very difficult if the motif in the unit cell is not precisely
known [8–12]. Our theoretical method combined wit
experimental technique will be extremely helpful in futur
discoveries of new surfaces in biological systems.

The surfaces of surfactant systems find applicati
in the production of the mesoporous silicate system
where in the synthesis process the ordered surfac
surface is used as a template for the three-dimensio
polymerization of silicate [13,14]. One obtains an order
silicate pore system with the symmetry and geometry
the surfactant template. We believe that our method c
also be used for the design of new mesoporous structu

Our method is based on the Landau-Ginzburg mod
which has been proposed by Teubner and Strey [15] a
Gompper and Schick [16,17] on the basis of neutron sc
tering experiments performed on microemulsion (hom
geneous ternary mixture of oil, water, and surfactant) a
later experiments and theory of their wetting properti
[18,19]. The Landau-Ginzburg free energy functional h
the following form:

Fffg ­
Z

d3rfjDfj2 1 gsfdj=fj2

1 sf2 2 1d2sf2 1 f0dg , (1)
where gsfd ­ g2f2 2 g0. Here f, the order parame-
ter, has the interpretation of the normalized differen
between oil and water concentrations;g2, g0 are positive
constants andf0 can be of either sign. The last term in
Eq. (1) is the bulk free energy and describes the relat
stability of the pure water phasesf ­ 21d, pure oil phase
sf ­ 1d, and microemulsionsf ­ 0d. The stability of
the bulk microemulsion phase depends onf0: for f0 . 0
microemulsion is a metastable bulk phase, whereas p
© 1996 The American Physical Society
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water phase or pure oil phase is stable; forf0 # 0 mi-
croemulsion is stable. We note that in generalgsfd can
be a polynomial inf2.

For g0 . 2 the system can undergo a transition
periodically ordered phases where water rich doma
and oil rich domains order. The interface betwe
the domains corresponds tofsrd ­ 0. The different
structures (stable or metastable) correspond to the min
of the functional (1). The following simple argumen
shows that among the surfaces, inside these structures
might expect minimal surfaces. The mean curvature
the surface at pointr is given by the divergence of the
vector normal to the surface at this point [20,21],

H ­ 2
1
2

=

µ
=f

j=fj

∂
­ 2

1
2

Df

j=fj
1

=nj=fj

2j=fj
. (2)

Here =n denotes the derivative along the normal to t
surface. It follows from the second term of Eq. (1) th
Fffg is minimized whenj=fj has the maximal value for
fsrd ­ 0 since at that pointgsfd has the lowest value
For the maximum ofj=fj its normal derivative vanishes
and consequently the second term in Eq. (2) does
We also know that in the case off, 2f symmetry,H
averaged over the whole surface should be zero. It me
that eitherDf is exactly zero at the surface or it chang
sign. From the first term of Eq. (1) it follows that th
former can be favored, and consequentlyH ­ 0 at every
point at the surface. Hence we can expect that some o
surfaces are minimal. This argument does not take i
account the global distribution of the fieldf; nonetheless
it provides a useful hint for our studies.

In order to find the minima of the functional w
have discretized Eq. (1) on the cubic lattice. Thus t
functional Fffsrdg becomes a functionFshfi,j,kjd of N3

variables, whereNh is the linear dimension of the cubi
lattice andh is the distance between the lattice poin
Each variablefi,j,k represents the value of the fieldfsrd
at the lattice sitesi, j, kd, and the indicesi, j, k change
from 1 to N. In our calculations we useN ­ 17, 33, 65,
and 129; final results are shown forN ­ 129. Please
note thatN ­ 129 results in over2 3 106 points per unit
cell. The first and second derivative in the gradient a
Laplacian terms of the functional (1) were calculated
the lattice according to the three point formula for th
first derivatives and five point formula for the secon
derivatives [22]. We impose on the fieldfijk the periodic
boundary conditions and the symmetry of the structu
we are looking for, by building up the field inside
unit cubic cell from a smaller polyhedron, replicating
by reflections and rotations combined with translatio
since the gyroid symmetry involves glide planes. Su
procedure enables substantial reduction of independ
variables.

The initial configuration needed for the minimization
set up by building the fieldfsrd first on a small lattice
N ­ 3 or 5. It is done by analogy to the structure
s
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a two componentsA, Bd molecular crystal. The value of
the fieldfi,j,k at a lattice sitesi, j, kd is set to 1 if in the
molecular crystal an atomA is in this place. It is set to
21, if there is an atomB, and to 0, if there is an empty
place atsi, j, kd. Next the small lattice can be enlarged t
the desired size by changing the number of points fromN
to 2N 2 1 and finding the values offi,j,k in new lattice
sites by interpolation.

We have used the conjugate gradient method [23]
find a minimum of the functionalFshfi,j,kjd. It is highly
unlikely, because of numerical accuracy, that a value
the field fi,j,k at a lattice sitesi, j, kd is exactly zero.
Therefore the points of the surface have to be localized
linear interpolation between the neighbor sites of the l
tice. This approximation is legible because the fieldfsrd
is very smooth. The points on the surface are used for
triangulation. From the triangles covering the surface w
get the surface area and the Euler characteristic,x. The
latter is given by the Euler relationx ­ F 2 E 1 V ,
whereF is the number of faces,E is the number of edges,
andV is the number of vertices of the triangles coverin
the surface. The edges and vertices has to be taken
weight 1, 1y2, or 1y4 if they appear inside, at the face, o
at the edge of the unit cell, respectively.

We have performed the detailed study of the pha
diagram, checking the Landau free energy of almost30
different structures of various symmetriesand found that
the only stable ordered structure is the lamellar pha
The phase boundaries for the lamellar phase are given
Gompper and Zschocke [24]. The gyroid phase of gen
5 has the second lowest energy (after lamellar pha
among all the structures (Table I). We have noted that t
phase has larger area per unit volume than the lame
phase, thus in the case of very sharp interfaces it sho
have smaller energy than the lamellar phase, since fr
the second term of Eq. (1) it follows that atfsrd ­ 0
the gradient term gives large and negative contributi
to the energy. This negative contribution is not cancel
by the bulk or Laplacian terms. Unfortunately the siz
of the interface scales with the size of the unit cell. W
have performed the same calculations for the new funct
gsfd given bygsfd ­ g2f4 2 g0. Increasing the power
of f by a factor of 2 indeed sharpens the interfa
between oil and water but at the same time reduces
size of the unit cell. The net result is the larger relativ
difference in energies between the gyroid and lamel
phase. We note that in the case of multiparameter Land
models introduced in recent years [16,25] we may exp
the stabilization of the various phases which here are o
metastable.

Among the local minima of the functional [Eq. (1)] we
have found four known minimal surfaces: P, D, I-WP
and G [26]. Here we present the detailed study of t
surfaces of gyroid symmetry. In all these structures
surface is characterized by nonpositive (zero or negati
Gaussian curvature. In Table I the main characterist
2727
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TABLE I. The gyroid surfaces of nonpositive Gaussian cu
vature. The symmetry of all the structures isIa3d. In all
cases the volume fraction is 0.5 by construction. Hereg2 ­
4
p

1 1 f0 1 g0 1 0.01, g0 ­ 3, and f0 ­ 0. At this point
the energy of the stable phase (lamellar phase) is20.2077 and
the size of the unit cell isd ­ 3.4. In column 2 the energy
per unit volume is given. In the third column the dimensio
less linear size of the unit celld is given. The surface areaS
(fourth column) is divided byV 2y3 ­ d2, i.e., is calculated per
face of the unit cubic cell. The surface area per unit volum
Syd3, is almost constant for all the structures. The genusg
(fifth column) has been calculated from the formula1 2 xy2,
wherex is the Euler characteristic per unit cell. We give
the last column the quantityd ­ jxj1y3d2yS. This quantity
characterizes not only the ordered phase, but also the fluc
ing microemulsion [28]. We think that it can be used as a t
for the structure of microemulsion. We find these structu
practically for all values of the parameters where the lame
phase is also stable [24], although most easily they are ge
ated close to the microemulsion stability region. The gen
surface area per side of the unit cellSyd2, symmetry, volume
fraction, andd do not depend on the parameters,g0, f0, andg2.
Only the energy, size of the unit cell, and surface area per
volume are model dependent.

Cell Surface
Name Energy length area Genus d

GM5 20.190 10.08 3.092 5 0.6469
G21 20.183 18.32 5.484 21 0.6236
GM53 20.186 26.16 7.907 53 0.5947
GM69 20.183 26.48 8.081 69 0.6364
GM109 20.181 31.72 9.657 109 0.6213
GM157 20.178 34.40 10.519 157 0.6448
GM141 20.186 41.32 12.460 141 0.5251

of the gyroid surfaces are given. Here we have us
N ­ 129 points per edge of the unit cell. In order t
estimate the errors we have compared the results obta
for N ­ 65 and 129; for the surface area the large
errors (gyroid 141 and 157) are smaller than 0.3%,
the energy the largest error is smaller than 1% for
gyroid 5 structure and a few percent for other structur
Of course these are the upper limits and most proba
the errors are much smaller. In Figs. 1 and 2 two gyro
structures are shown together with the histograms of th
mean curvature. Please note that for the minimal surf
the mean curvature is peaked around 0 in the histogra
but due to the numerical accuracy the peak has a fi
width. We note that as the genus of the surface increa
the surface area per unit volumesSyd3d and the energy per
unit volume does not change very much (Table I). So
authors [27] ruled out the possibility of the existence
high genus surfaces in real systems, because of expe
high curvature regions. We have checked the Gaus
curvature in high genus surfaces and found that it is
much different from the low genus surfaces. This is d
to the sufficiently large size of the unit cell for the forme
structures. We also observe that the gyroid structure
2728
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FIG. 1. G141 gyroid structure (see Table I). (a) One unit ce
(b) The histrogram of the mean curvatureH. The size of
the unit cell is given in Table I. Here the typical curvatur
1yR ­ 6

p
2K, is 60.1 (K is the Gaussian curvature).

high genus are most easily generated (from any ini
configuration and sufficiently large unit cell) close to th
stability region of microemulsion.

In summary, we have used the Landau-Ginzbu
Hamiltonian for microemulsions to generate period
surfaces of nonpositive Gaussian curvature. Using t
model we have studied seven periodic gyroid surfac
One of them is the Schoen-Luzzati minimal gyro
surface of genus 5. The remaining six structures are n
The model can be well applied by physicists workin
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FIG. 2. GM157 gyroid structure. Legend as in Fig. 1. He
the typical curvature is60.5.

in soft condensed matter, mathematicians working
topology, biologists, and crystallographers. We a
positive that its richness is far from being explored by o
work.
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