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High Genus Periodic Gyroid Surfaces of Nonpositive Gaussian Curvature
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In this paper we present a novel method for the generation of periodic embedded sur-
faces of nonpositive Gaussian curvature. The structures are related to the local minima of
the scalar order parameter Landau-Ginzburg Hamiltonian for microemulsions. The method is
used to generate six unknown surfaces IaBd symmetric (gyroid) of genus 21, 53, 69, 109,
141, and 157 per unit cell. All of them but that of genus 21 are most likely the mini-
mal surfaces. The Schoen-Luzzati gyroid minimal surface of genus 5 (per unit cell) is also
obtained.

PACS numbers: 61.20.—p, 02.40.-k, 64.75.+g, 68.10.—m

The surfactant molecules which are the main ingrediengenus 21, 53, 69, 109, 141, and 157. All these surfaces
of soaps and detergents have the ability to solubilize oibut that of genus 21 are minimal; we have also generated
in water, two liquids which in the binary mixture at nor- the Schoen-Luzzati gyroid minimal surface of genus 5 per
mal conditions are immiscible. This ability stems from unit cell.
their chemical structure; a surfactant molecule has polar We point out that the unique characterization of the
and nonpolar segments at two ends and thus is simultanperiodic surfaces using standard x-ray scattering methods
ously hydrophobic and hydrophilic. The term amphiphilicis very difficult if the motif in the unit cell is not precisely
(from the Greek work for loving both) molecule is used known [8—12]. Our theoretical method combined with
since one end (polar) of the molecule is well solubilized inexperimental technique will be extremely helpful in future
water while the other (nonpolar) is in oil. Hence the mol-discoveries of new surfaces in biological systems.
ecule preferably stays at the oil-water interface, forming a The surfaces of surfactant systems find application
monolayer. At high concentration of surfactant the physin the production of the mesoporous silicate systems,
ical interface made of these molecules orders, formingvhere in the synthesis process the ordered surfactant
periodic structures of various symmetries. Similar behavsurface is used as a template for the three-dimensional
ior is observed in systems of biological molecules (lipids)polymerization of silicate [13,14]. One obtains an ordered
which in water solutions self-assemble into bilayers. Insilicate pore system with the symmetry and geometry of
1967-68 Luzzatiet al.[1-3] observed that the type of the surfactant template. We believe that our method can
ordering in the lecithin-water and lipid-water systems can-also be used for the design of new mesoporous structures.
not be described by the arrangement of simple surfactant Our method is based on the Landau-Ginzburg model
aggregates such as cylinders, planes, or spheres. Thesich has been proposed by Teubner and Strey [15] and
observed the cubic bicontinuous phase of thed sym-  Gompper and Schick [16,17] on the basis of neutron scat-
metry (gyroid) where the lipid bilayers formed a highly tering experiments performed on microemulsion (homo-
curved smooth (embedded) surface of the same symmeeneous ternary mixture of oil, water, and surfactant) and
try. Such surface divides the volume into two disjointlater experiments and theory of their wetting properties
subvolumes. The NMR, SAXS (small angle x-ray scatter{18,19]. The Landau-Ginzburg free energy functional has
ing), and surfactant concentration measurements indicatae following form:
that these surfaces closely resemble triply periodic min-
imal surfaces [4-7], i.e., surfaces characterized by zero Fl¢] = fd3r[|A¢|2 + g(@)IVel?
mean curvature at every point. The latter belongs to the
broader class of periodic surfaces of nonpositive Gauss- +(¢? = D> + f0)]. (1)
ian curvature. Since the discovery of minimal periodicwhere g(¢) = g.¢> — go. Here ¢, the order parame-
surfaces in 1865 by Schwarz only one periodic embedter, has the interpretation of the normalized difference
ded gyroid surface of cubic symmetry and genus 5 (pebetween oil and water concentrations; go are positive
unit cell) has been discovered and fully characterized [4]constants angfy can be of either sign. The last term in
Apart from that six more oPn3m andIm3m symmetry  Eq. (1) is the bulk free energy and describes the relative
and known, all of low genusHere we present the general stability of the pure water phagé = —1), pure oil phase
method which can be used to generate periodic surfaces ¢ = 1), and microemulsior(¢ = 0). The stability of
nonpositive Gaussian curvature. We prove the efficiencthe bulk microemulsion phase dependsfgnfor fo > 0
of this method by generating six new gyroid structures ofmicroemulsion is a metastable bulk phase, whereas pure
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water phase or pure oil phase is stable; fgr= 0 mi-  a two componentA, B) molecular crystal. The value of
croemulsion is stable. We note that in genesép) can  the field ¢, ;. at a lattice site(i, j, k) is set to 1 if in the
be a polynomial inp?. molecular crystal an atorA is in this place. It is set to

For go > 2 the system can undergo a transition to—1, if there is an atonB, and to O, if there is an empty
periodically ordered phases where water rich domainglace at(i, j, k). Next the small lattice can be enlarged to
and oil rich domains order. The interface betweenthe desired size by changing the number of points fiddm
the domains corresponds tp(r) = 0. The different to 2N — 1 and finding the values ap; ; ; in new lattice
structures (stable or metastable) correspond to the minimgites by interpolation.
of the functional (1). The following simple argument We have used the conjugate gradient method [23] to
shows that among the surfaces, inside these structures, iied a minimum of the functionaf({¢; ; «}). It is highly
might expect minimal surfaces. The mean curvature ofinlikely, because of numerical accuracy, that a value of
the surface at point is given by the divergence of the the field ¢, at a lattice site(i, j,k) is exactly zero.
vector normal to the surface at this point [20,21], Therefore the points of the surface have to be localized by

| Vo | Ad v,V Iinear in'gerpolatiqn be_twgen thg neighbor sites qf the lat-

H=—— <—> = —— + . (2) tice. This approximation is legible because the figlar)

2 \[Vel 2 Vol 2|Vl is very smooth. The points on the surface are used for the
Here V,, denotes the derivative along the normal to thetriangulation. From the triangles covering the surface we
surface. It follows from the second term of Eq. (1) thatget the surface area and the Euler characterigtic,The
F[¢] is minimized whenV¢| has the maximal value for latter is given by the Euler relatioy = F — E + V,
¢(r) = 0 since at that poing(¢) has the lowest value. whereF is the number of faceg; is the number of edges,
For the maximum ofV¢| its normal derivative vanishes, andV is the number of vertices of the triangles covering
and consequently the second term in Eq. (2) does sahe surface. The edges and vertices has to be taken with
We also know that in the case @f, —¢ symmetry,H  weight 1, ¥2, or 1/4 if they appear inside, at the face, or
averaged over the whole surface should be zero. It mearsd the edge of the unit cell, respectively.
that eitherA ¢ is exactly zero at the surface or it changes We have performed the detailed study of the phase
sign. From the first term of Eq. (1) it follows that the diagram, checking the Landau free energy of aln®Gt
former can be favored, and consequetily= 0 at every different structures of various symmetrigsd found that
point at the surface. Hence we can expect that some of thbe only stable ordered structure is the lamellar phase.
surfaces are minimal. This argument does not take int@he phase boundaries for the lamellar phase are given by
account the global distribution of the fieltl; nonetheless Gompper and Zschocke [24]. The gyroid phase of genus
it provides a useful hint for our studies. 5 has the second lowest energy (after lamellar phase)

In order to find the minima of the functional we among all the structures (Table ). We have noted that this
have discretized Eq. (1) on the cubic lattice. Thus thephase has larger area per unit volume than the lamellar
functional F[¢(r)] becomes a functio({¢; ;«}) of N>  phase, thus in the case of very sharp interfaces it should
variables, wherevh is the linear dimension of the cubic have smaller energy than the lamellar phase, since from
lattice andh is the distance between the lattice points.the second term of Eq. (1) it follows that di(r) = 0
Each variablep; ; » represents the value of the fieflr)  the gradient term gives large and negative contribution
at the lattice site(i, j, k), and the indices, j,k change to the energy. This negative contribution is not canceled
from 1 toN. In our calculations we us¥ = 17,33,65, by the bulk or Laplacian terms. Unfortunately the size
and 129; final results are shown fof = 129. Please of the interface scales with the size of the unit cell. We
note thatv = 129 results in oveR X 10° points per unit have performed the same calculations for the new function
cell. The first and second derivative in the gradient ancz(¢) given byg(¢) = gr¢* — go. Increasing the power
Laplacian terms of the functional (1) were calculated onof ¢ by a factor of 2 indeed sharpens the interface
the lattice according to the three point formula for thebetween oil and water but at the same time reduces the
first derivatives and five point formula for the secondsize of the unit cell. The net result is the larger relative
derivatives [22]. We impose on the fielfi ;. the periodic  difference in energies between the gyroid and lamellar
boundary conditions and the symmetry of the structurgghase. We note that in the case of multiparameter Landau
we are looking for, by building up the field inside a models introduced in recent years [16,25] we may expect
unit cubic cell from a smaller polyhedron, replicating it the stabilization of the various phases which here are only
by reflections and rotations combined with translationsmetastable.
since the gyroid symmetry involves glide planes. Such Among the local minima of the functional [Eqg. (1)] we
procedure enables substantial reduction of independehtave found four known minimal surfaces: P, D, I-WP,
variables. and G [26]. Here we present the detailed study of the

The initial configuration needed for the minimization is surfaces of gyroid symmetry. In all these structures a
set up by building the fields(r) first on a small lattice surface is characterized by nonpositive (zero or negative)
N =3 or 5. Itis done by analogy to the structure of Gaussian curvature. In Table | the main characteristics
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TABLE |. The gyroid surfaces of nonpositive Gaussian cur-
vature. The symmetry of all the structures fig3d. In all
cases the volume fraction is 0.5 by construction. Here=
4T+ fo + go + 0.01, go = 3, and fp = 0. At this point

the energy of the stable phase (lamellar phase)(077 and

the size of the unit cell is/ = 3.4. In column 2 the energy
per unit volume is given. In the third column the dimension-
less linear size of the unit cell is given. The surface area
(fourth column) is divided by?? = 42, i.e., is calculated per
face of the unit cubic cell. The surface area per unit volume,
S/d?, is almost constant for all the structures. The gegus
(fifth column) has been calculated from the formula- y /2,
where y is the Euler characteristic per unit cell. We give in
the last column the quantity = |y|'?d%/S. This quantity
characterizes not only the ordered phase, but also the fluctuat-
ing microemulsion [28]. We think that it can be used as a test
for the structure of microemulsion. We find these structures
practically for all values of the parameters where the lamellar
phase is also stable [24], although most easily they are gener-
ated close to the microemulsion stability region. The genus,
surface area per side of the unit c8{ld?, symmetry, volume
fraction, andé do not depend on the parametegs, fo, andg,.
Only the energy, size of the unit cell, and surface area per unit
volume are model dependent.

Cell Surface
Name Energy length area Genus é
GM5 —0.190 10.08 3.092 5 0.6469
G21 —0.183  18.32 5.484 21 0.6236
GM53 —0.186  26.16 7.907 53 0.5947 0.50 b) - T -
GM69 —0.183  26.48 8.081 69 0.6364

GM109 -—0.181 31.72 9.657 109 0.6213
GM157 —0.178  34.40 10.519 157 0.6448 4o r |
GM141 —0.186 41.32 12.460 141 0.5251

030

of the gyroid surfaces are given. Here we have used gzl
N = 129 points per edge of the unit cell. In order to
estimate the errors we have compared the results obtaines
for N = 65 and 129; for the surface area the largest oo |
errors (gyroid 141 and 157) are smaller than 0.3%, for
the energy the largest error is smaller than 1% for the .
gyroid 5 structure and a few percent for other structures. %10 005 0.00 0.05 010

Of course these are the upper limits and most probably H

the errors are much smaller. In Figs. 1 and 2 two gyroidFIG. 1. G141 gyroid structure (see Table 1). (a) One unit cell.
structures are shown together with the histograms of thei®) The histrogram of the mean curvatuté The size of
mean curvature. Please note that for the minimal surfac® Unit cell is given in Table I. Here the typical curvature,
the mean curvature is peaked around O in the histogram ,/R = £V=K, is 0.1 (Kis the Gaussian curvature).
but due to the numerical accuracy the peak has a finite
width. We note that as the genus of the surface increasésgh genus are most easily generated (from any initial
the surface area per unit volurt®/d?) and the energy per configuration and sufficiently large unit cell) close to the
unit volume does not change very much (Table I). Somestability region of microemulsion.

authors [27] ruled out the possibility of the existence of In summary, we have used the Landau-Ginzburg
high genus surfaces in real systems, because of expecteidmiltonian for microemulsions to generate periodic
high curvature regions. We have checked the Gaussiasurfaces of nonpositive Gaussian curvature. Using this
curvature in high genus surfaces and found that it is notnodel we have studied seven periodic gyroid surfaces:
much different from the low genus surfaces. This is dueOne of them is the Schoen-Luzzati minimal gyroid
to the sufficiently large size of the unit cell for the former surface of genus 5. The remaining six structures are new.
structures. We also observe that the gyroid structures dfhe model can be well applied by physicists working
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