
An Embedded Triply Periodic Minimal Surface (TPMS)
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F-RD

Space group symbol: , lZ L
mm

Genus of the associated Riemann surface: 6

This infinite surface, which was discovered in 1959 [Schoen 19701, has the s€une

symmetries as a cubic close-packed assembly of congruent spheres. F-RD is an
embedded surface, i.e.,It has no self-intersections.

Every straight line lying in a minimal surface is an axis of Z-fold rotational
symmetry (Schwarz's reflection principle [Schwarz 1890]). All of the examples of
embedded TPMS known before 1,970 contain straight lines, which are called linear
asymptotics. Hence for every such surface, the two disjoint interpenetrating labyrinths
into which R3 is partitioned are congruent. Such surfaces are conventionally called
balanced [Fischer and Koch 1986]. F-RD contains no in-surface straight lines. Its two
labyrinths are not congruent, and it is therefore calledunbalanced.

The relation between F-RD and a face-centered cubic (f.c.c.) lattice packing of
spheres can be described picturesquely in terms of the following 'ball-and-spoke'
model of the f.c.c. crystal structure:

Transform each ball in the structure into a hollow sphere, in which twelve small circular holes
are cut out. Each hole in a given sphere is centered oh aline from the sphere center to the center
of one of the twelve neareEt neighbor spheres. foin each pair of nearest neighbor spheres by a
hollow cylindrical tube ('handleT), smoothly attached at each of its ends to 9g rim of a sghere
hole. Finally, let this infinite periodic struc-ture be transformed into a soaP film s]'rfass that is
allowed to-relax into equilibrium, with the same air pressure on both sides of the surface,
without changing either jts topology or symmetry. Thgmean curvature of this final soap film
surface, which is F-RD, is zero everywhere.

The labyrinth obtained from the f.c.c. network in the procedure described above
is conveniently represented by lts skeletal graph [Schoen 7970], an infinite symmetric
graph whose nodes are f.c.c. lattice points, each joined by an edge to its twelve
nearest neighbor lattice points. The'F' in F-RD is the name of this skeletal graph. Its
dual, the skeletal graph of the labyrinth on the opposite side of the surface, is not a
symmetric graph. Its nodes and edges are the vertices and edges, respectively, of an
infinite packing of rhombic dodecahedra-whence its name: 'RD'. Two-thirds of the
nodes of the RD graph are of degree four, and one-third are of degree eight.
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Let us call a surface of non-zero constant mean curvature an H-surface, and let
H" denote the mean curvature of the surface. Numerical calculations [Anderson et al
79901provide empirical evidence that the area of F-RD is a maximum with respect
to all H-surfaces that belong to the same family as F-RD. Since all of these surfaces
have the same symmetry and the siune topology as F-RD, they are described by the
same pair of skeletal graphs as F-RD. According to Andercon et aI:

'The fact that a local maximum in area occurs at H* : 0 [both for the F-RD family and also for
each of the other families of H-surfaces studied by Anderson et alf is not predicted by *y
known theorem. Schwarz showed that under the orthogonality boundary conditions, the second
variation of the area is negative for a minimal surface b,ounded by S" planes of a tetrahedrorL
but this only means that some normal perturbation ryhich preserves the ortho-gonality boundary
conditions iecreases the area and does not say anything specifically about those perturbations
with constant mean curvafure.'

Hildebrandt, Grtiter, and Nitsche [Hildebrandt 1985] [Grtiter et al 19861 proved
that only in the case of periodic surfaces of constant mean curvature is p3

partitioned into fixed volume fractions such that the surface area is stationary with
respect to all area perturbations.

The topological complexity of a periodic minimal surface is defined by the genus

of one lattice fundamental region, regarded as embedded in the 3-torus T3. The

genus is equal to that of the"Riu-uin surface defined by mapping the surface
normal onto the unit sphere (Gauss map). A lattice fundamental region_of F-RD is
defined by an assembly of 48 Fliichensti.icke (smallest repeating units), each related to
four others by reflection in the planes of its four curved boundary edges.

It was shown by Weiersffass [Weierstrass L866] that each rectangular coordinate
x, y, and z of a point on a minimal surface is a harmonic function of the complex
variable rr.r:

(x, y, z): Re - cD'2,; (f + ,'z),2a')R(r') dr' ,

where R is an analytic function.

In 1934, Stessmann lstessmann 193/] carried out an incomplete study of the
Weierstrass function R for the self-intersecting surface A(F-RD), which is the adjoint
of F-RD. This Weierstrass function also provides the solution for F-RD itself
(solutions for any two adjoint surfaces differ only in the value of 0:0:0 for one and
nl2 for the othei). Stessmann treated only A(F-RD), not considering either the local

or global properties of F-RD. He apparently did not realize that F-RD is an

emdedded TPMS, which makes it considerably more interesting than A(F-RD). That
F-RD is embedded was first recogttrzedby the author tnt969 [Schoen 1970i.
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The Fliichettstuck of A(F-RD) is a minimal surface bounded by a skew
quadrilateral with straight edges. This polygon is one of six proved by Schoenfliess
[Schoenfliess 18901 to be the only skew quadrilaterals spanned by minimal surfaces
that generate TPMS by half-turn rotations about their edges. A fundamental relation
between adjoint minimal surfaces implies that the Fliichenstuck of F-RD is bounded
by four curped edges, each of which is a segment of a plane line of curvature.

Two of the other five Schoenfliess quadrilaterals define Schwarz'sD surface and
its adjoint, Schwarz'sP surface, respectively. Each of these surfaces is an embedded
balanced TPMS of genus 3.

Of the three remaining Schoenfliess quadrilaterals, two define self-intersecting
periodic surfaces whose respective adjoints are embedded TPMS. One of these is
Neovius's surface C(P) (genus 9). The other, which was first identified by the author
in1969 [Schoen 1970] [Cvijovic et all, is called I-WP (genus 4). C(P) has the same in-
surface straight lines as Schwarz'sP surface and is therefore a balanced surface, but
I-WP-like F-RD-contains no straight lines and is unbalanced. The sixth
Schoenfliess quadrilateral has one 120o corner, which accounts for a branch point
(self-intersection).

Fogden and Hyde [Fogden et al 19921 proved that for every TPMS of the 'regulay'
class, which is defined by the properly that only locally equivalent flat points are
superposed in the Gauss map, R can be expressed in the form of the following
simple product 

n

R(ar) :exp (i o) [,r- a:s-bitQi+7).

n is the number of distinct stereographic imag€s al;, in the complex plane of flat-
point normal-vectors in the Gauss map, b, is the order of the flat point with normal
vector image ar;, and 0isthe Bonnet angle of associativity [Bonnet 1853].

It is easily verified that F-RD is not a TPMS of the regular class. The Weierstrass
function R(ar) for F-RD was recently derived by Fogden [Fogden 1992], who proved
that R(ar) is defined by the equation

p'rprRt - ts p'zrR3 + 5 prRz- 48 : o ;

pr is the Weierstrass polynomiat o (ro* 1) for I-WP ffid pris the Weierstrass
polynomial ar* -l4ao + I for both D and P. The Weierstrass functions R(ar) for I-IAIP

and for D and P are la(a+I)-t'tf and far*-l4too*ll-''', respectively. It is not
possible to solve Fogden's fifth-degree polynomial equation analytically for R; it
must be solved numerically.



The occurrence of p, and pzin the coefficients of the equation for R for F-RD is a

consequence of the following fact:

in the neighborhood of each of its six flat points of degree-3, F-RD is asymptotically congruent
to I-WP riear any of I-WP's six flat points of degree 3, and
in the neighboihood of each of its eight flai points of degree Z I-RD is asymptotically
congruentlo both P and D near any of their eight flat points of degree 2.

Like F-RD, Neovius's surface C(P) (which is also a member of the irregular
class), has six flat points of degree 3 and eight flat points of- degree 2.. Fogden

[Fogden 1gg2lderivLd the following equation for its Weierstrass function R(at):

L popiR' - piR" + 2poR' + I : 0;
4

poisthe Weierstrass polynomial 3ars + 28a6- t4iof +28a] + 3 forPandD and Pr rs

ihe Weiersffass polynomial af - sof - 5@2 + t for I-WP. This solution, as pointed out

by Fogden, is eqlivhent to that derived by Neovius [Neovius 1883].

Smyth [Smyth lg}4|provided the first complete proof that F-RD is embedded.

He also proved the following remarkable result:

Theoremz Let M be the boundary of a tetrahedron in R3. There exist exactly 3

stationary minimal surfaces of diik type with boundary gf .M hauing connected

intersection utith each of the fices tf M these are all imbedded, nonnlanar an.d free

fro* interior branch iointsi in fa-ct *4 
!? .a graph. For all stationary minimal

'surfaces with boundary on M-whether of disk Ap, o!_not-the ratio of perimeter to

aria is the same, namely,2fr, where r is the inradius of M'

The table below lists the value of dimensionless area AlWts per lattice

fundamental region for all TPMS with a cubic space lattice for which data are

available. The 1rilrr", of AlIPt3 increase with genus, is expected. Except in the case of

F-RD, the value of AlWr3 is known exactly. (For F-RD, it .is orfly co.Yie.ctured

[Andersonet allggolthat alwt3-3K(k)lK(k'), whetek2--8(z\trz1121 + 4(3)1/'z1-)

TPMS genus AIWBt
t
t
I
t

P
D
G
I-WP
F-RD
C(P)

- 2.3457
- 2.4177
- 2.4533

- 2.7495

- 3.0054

- 3.5105

(: 3K(7 I 2)K'(1 | 2)^
(= (3122t3) r((1 l2)lK(1.l2)^
(: (3l42ts) (K(1 l2)lK(112)) [1+(I((1 lz)K'(Ll2))']^
(:2ztz3u2)b
(: 3Kl K) (k2 - 8(3)1 rz ll21 + 4(3)u 2l) c

(: 3 K'lK) ^
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