F-RD
An Embedded Triply Periodic Minimal Surface (TPMS)
4 _ 2
Space group symbol: F —3—
Genus of the associated Riemann surface: 6

This infinite surface, which was discovered in 1969 [Schoen 1970], has the same
symmetries as a cubic close-packed assembly of congruent spheres. F-RD is an
embedded surface, i.e., it has no self-intersections.

Every straight line lying in a minimal surface is an axis of 2-fold rotational
symmetry (Schwarz’s reflection principle [Schwarz 1890]). All of the examples of
embedded TPMS known before 1970 contain straight lines, which are called linear
asymptotics. Hence for every such surface, the two disjoint interpenetrating labyrinths

into which R3 is partitioned are congruent. Such surfaces are conventionally called
balanced [Fischer and Koch 1986]. F-RD contains no in-surface straight lines. Its two
labyrinths are not congruent, and it is therefore called unbalanced.

The relation between F-RD and a face-centered cubic (f.c.c.) lattice packing of
spheres can be described picturesquely in terms of the following ‘ball-and-spoke’
model of the f.c.c. crystal structure:

Transform each ball in the structure into a hollow sphere, in which twelve small circular holes
are cut out. Each hole in a given sphere is centered on a line from the sphere center to the center
of one of the twelve nearest neighbor spheres. Join each pair of nearest neighbor spheres by a
hollow cylindrical tube (‘handle’), smoothly attached at each of its ends to the rim of a sphere
hole. Finally, let this infinite periodic structure be transformed into a soap film surface that is
allowed to relax into equilibrium, with the same air pressure on both sides of the surface,
without changing either its topology or symmetry. The mean curvature of this final soap film
surface, which is F-RD, is zero everywhere.

The labyrinth obtained from the f.c.c. network in the procedure described above
is conveniently represented by its skeletal graph [Schoen 1970], an infinite symmetric
graph whose nodes are f.c.c. lattice points, each joined by an edge to its twelve
nearest neighbor lattice points. The ‘F’ in F-RD is the name of this skeletal graph. Its
dual, the skeletal graph of the labyrinth on the opposite side of the surface, is not a
symmetric graph. Its nodes and edges are the vertices and edges, respectively, of an
infinite packing of rhombic dodecahedra—whence its name: ‘RD’. Two-thirds of the
nodes of the RD graph are of degree four, and one-third are of degree eight.




Let us call a surface of non-zero constant mean curvature an H-surface, and let
H* denote the mean curvature of the surface. Numerical calculations [Anderson et al
1990] provide empirical evidence that the area of F-RD is a maximum with respect
to all H-surfaces that belong to the same family as F-RD. Since all of these surfaces
have the same symmetry and the same topology as F-RD, they are described by the
same pair of skeletal graphs as F-RD. According to Anderson et al:

‘The fact that a local maximum in area occurs at H* = 0 [both for the F-RD family and also for
each of the other families of H-surfaces studied by Anderson et al] is not predicted by any
known theorem. Schwarz showed that under the orthogonality boundary conditions, the second
variation of the area is negative for a minimal surface bounded by the planes of a tetrahedron,
but this only means that some normal perturbation which preserves the orthogonality boundary
conditions decreases the area, and does not say anything specifically about those perturbations
with constant mean curvature.’

Hildebrandt, Griiter, and Nitsche [Hildebrandt 1985] [Griiter et al 1986] proved
that only in the case of periodic surfaces of constant mean curvature is R3
partitioned into fixed volume fractions such that the surface area is stationary with
respect to all area perturbations.

The topological complexity of a periodic minimal surface is defined by the genus
of one lattice fundamental region, regarded as embedded in the 3-torus T3. The
genus is equal to that of the Riemann surface defined by mapping the surface
normal onto the unit sphere (Gauss map). A lattice fundamental region of F-RD is
defined by an assembly of 48 Flichenstiicke (smallest repeating units), each related to
four others by reflection in the planes of its four curved boundary edges.

It was shown by Weierstrass [Weierstrass 1866] that each rectangular coordinate
x, y, and z of a point on a minimal surface is a harmonic function of the complex
variable w:

(x,y,z2)=Re e"@f (1- w2, i(1+ 0?2),20')Rlo')do’,

where R is an analytic function.

In 1934, Stessmann [Stessmann 1934] carried out an incomplete study of the
Weierstrass function R for the self-intersecting surface A(F-RD), which is the adjoint
of F-RD. This Weierstrass function also provides the solution for F-RD itself
(solutions for any two adjoint surfaces differ only in the value of 6: 6 = 0 for one and
7t/ 2 for the other). Stessmann treated only A(F-RD), not considering either the local
or global properties of F-RD. He apparently did not realize that F-RD is an
embedded TPMS, which makes it considerably more interesting than A(F-RD). That
F-RD is embedded was first recognized by the author in 1969 [Schoen 1970].
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The Flichenstuck of A(F-RD) is a minimal surface bounded by a skew
quadrilateral with straight edges. This polygon is one of six proved by Schoenfliess
[Schoenfliess 1890] to be the only skew quadrilaterals spanned by minimal surfaces
that generate TPMS by half-turn rotations about their edges. A fundamental relation
between adjoint minimal surfaces implies that the Flichenstuck of F-RD is bounded
by four curved edges, each of which is a segment of a plane line of curvature.

Two of the other five Schoenfliess quadrilaterals define Schwarz’s D surface and
its adjoint, Schwarz’s P surface, respectively. Each of these surfaces is an embedded
balanced TPMS of genus 3.

Of the three remaining Schoenfliess quadrilaterals, two define self-intersecting
periodic surfaces whose respective adjoints are embedded TPMS. One of these is
Neovius’s surface C(P) (genus 9). The other, which was first identified by the author
in 1969 [Schoen 1970] [ Cvijovic et al], is called I-WP (genus 4). C(P) has the same in-
surface straight lines as Schwarz’s P surface and is therefore a balanced surface, but
I-WP—like F-RD—contains no straight lines and is unbalanced. The sixth
Schoenfliess quadrilateral has one 120° corner, which accounts for a branch point
(self-intersection).

Fogden and Hyde [Fogden et al 1992] proved that for every TPMS of the ‘regular’
class, which is defined by the property that only locally equivalent flat points are
superposed in the Gauss map, R can be expressed in the form of the following
simple product:

- b,/ (b;+1
R(@) =exp (i6) [[(w-w) @Y,

i=]
n is the number of distinct stereographic images wj, in the complex plane, of flat-
point normal-vectors in the Gauss map, b; is the order of the flat point with normal
vector image w;, and 0 isthe Bonnet angle of associativity [Bonnet 1853].

It is easily verified that F-RD is not a TPMS of the regular class. The Weierstrass
function R(w) for F-RD was recently derived by Fogden [Fogden 1992], who proved
that R(w) is defined by the equation

pip, R° - 15 p’R*>+ 5p,R*- 48 =0 ;

p, is the Weierstrass polynomial w (w*+ 1) for I-WP and p, is the Weierstrass
polynomial @’ - 14" +1 for both D and P. The Weierstrass functions R(w) for -WP
and for D and P are [w(w+1)*?] and [0®-140*+1]"", respectively. It is not
possible to solve Fogden'’s fifth-degree polynomial equation analytically for R; it
must be solved numerically.
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The occurrence of p; and p, in the coefficients of the equation for R for F-RD is a
consequence of the following fact:

in the neighborhood of each of its six flat points of degree 3, F-RD is asymptotically congruent
to I-WP near any of I-WP’s six flat points of degree 3, and

in the neighborhood of each of its eight flat points of degree 2, F-RD is asymptotically
congruent to both P and D near any of their eight flat points of degree 2.

Like F-RD, Neovius’s surface C(P) (which is also a member of the irregular
class), has six flat points of degree 3 and eight flat points of degree 2. Fogden
[Fogden 1992] derived the following equation for its Weierstrass function R(w):

1
ZprfRB— pr6 +2pDR2 +1=0;

pp, is the Weierstrass polynomial 30® + 280°- 14w* + 28"+ 3 for Pand D, and p, is
the Weierstrass polynomial @ - 5w* - 52 + 1 for I-WP. This solution, as pointed out
by Fogden, is equivalent to that derived by Neovius [Neovius 1883].

Smyth [Smyth 1984] provided the first complete proof that F-RD is embedded.
He also proved the following remarkable result:

Theorem: Let M be the boundary of a tetrahedron in R3. There exist exactly 3
stationary minimal surfaces of disk type with boundary on M having connected
intersection with each of the faces of M; these are all imbedded, non-planar and free
from interior branch points; in fact each is a graph. For all stationary minimal
surfaces with boundary on M —uwhether of disk type or not—the ratio of perimeter to
area is the same, namely, 2/r, where r is the inradius of M.

The table below lists the value of dimensionless area A/V?? per lattice
fundamental region for all TPMS with a cubic space lattice for which data are
available. The values of A/V?3 increase with genus, as expected. Except in the case of
F-RD, the value of A/V?3 is known exactly. (For F-RD, it is only conjectured
[Anderson ef al 1990] that A/V?3=3K(k)/ K(k’), where k*= 8(3)1/2/[21 + 4(3)/2].)

TPMS genus AJVH
P 3 ~ 2.3451 (=3K(1/2)K’(1/2)?
D 3 ~ 24177 (= (3/22/3)K’(1/2)/K(1/2)?
G 3~ 24533 (=(3/4¥3)(K(1/2)/K(1/2)) [1+(K(1/2)K"(1/2))*]®
I-WP 4 ~ 2.7495 (=2?/331/2)P
F-RD 6 ~ 3.0054 (=3K/K’) (k2= 8(3)/2/[21 + 4(3)'/2]) ¢
C(P) 9 ~ 35105 (=3 K’/K)?
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a [Schoen 1970]
b [Cvijovic et al 1994]
¢ [Anderson et al 1990]
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