Let p be a prime and set $p^* = (p-1)/2$. The object is to show that

$$\left\{\sin\left(\frac{\pi k}{p}\right): k=1,\ldots,p^*\right\}$$

is independent over \mathbb{Q} .

STEP 1: $f(x) = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$ is irreducible over \mathbb{Q} . Idea: Replace x by x + 1 and apply Eisenstein's criterion.

Set $\omega = e^{2\pi i/(2p)} = e^{\pi i/p}$, a primitive (2p)th root of unity.

STEP 2: $[\mathbb{Q}(\omega):\mathbb{Q}] = p-1$ and a basis for $\mathbb{Q}(\omega)/\mathbb{Q}$ is $\omega, \omega^2, \ldots, \omega^{p-1}$. Idea: f(-x) is irreducible by STEP 1. And

$$(\omega+1)f(-\omega) = \omega^p - \omega^{p-1} + \omega^{p-2} - \dots + \omega$$
$$\omega^{p-1} - \omega^{p-2} + \dots - \omega + 1$$
$$= \omega^p + 1 = 0.$$

So $f(-\omega) = 0$.

STEP 3: Proof. Suppose

$$\sum_{k=1}^{p^*} c_k \sin(k\pi/p) = 0,$$

where the $c_k \in \mathbb{Q}$. Then we have:

$$\sum_{k=1}^{p^*} \frac{c_k}{2i} \left(\omega^k - \frac{1}{\omega^k} \right) = 0$$

$$\sum_{k=1}^{p^*} c_k (\omega^k + \omega^{p-k}) = 0$$

$$\sum_{k=1}^{p^*} c_k \omega^k + \sum_{k=p^*+1}^{p-1} c_{p-k} \omega^k = 0,$$

since $p - p^* = p^* + 1$. Since $\{\omega, \omega^2, \dots, \omega^{p-1}\}$ is independent over \mathbb{Q} by STEP 2, we have each $c_k = 0$.