
ROMBIX
Supplementary manual



The illustration on the cover shows 49 sets of ROMBIX-40 arranged in orderly concentric rings

This four-color puzzle/game is made of injection-molded high-impact plastic.
It includes a tray and cover, plus an illustrated instruction sheet.

U. S. Patents Nos. 4.223.890 and 5.314.183
Japanese Patent No. 1659198

'Pentominoes' is a registered trademark owned by Solomon GOlomb.
'True BASIC' is a registered trademark owned by True BASIC, Inc.
'ROMBIX' is a registered trademark owned by ROMBIX U.S.A., Inc.

Copyright ©1994 by Alan Schoen
All Rights Reserved

---------



FOREWORD

This potpourri is a provisional supplement to the instructions that accompany the
commercial version of the puzzle / game called ROMBIX. A number of topics that are
not included here, as well as expanded treatments of some of the included topics, are
covered in a book about ROMBIX that I plan to publish in 1995.

The most widely known two-dimensional combinatorial dissection puzzles are
polyominoes and their various close relatives. The variety in the shapes of the pieces in
a set of n-ominoes is the result of combining n replicas of a single square module, edge-
to-edge, in every possible way [Golomb 1965] [Golomb 1994] [Gardner 1966] [Klamer
1981] [Crunbaum and Shephard 1987] [Martin 1991]. ROMBIX is also a combinatorial
dissection puzzle, but it differs from polyominoes in several fundamental ways. Its piec-
es are derived not from a single module but from n differently shaped modules, and
these modules-which are rhombs-are combined only in pairs. This property, as well
as the fact that some single rhombs are also included in each set, makes the behavior of
ROMBIX-both as a puzzle and as a game-rather different from that of polyominoes.

The commercial version of ROMBIX is denoted here as ROMBIX-16, to distinguish it
from ROMBIX-2n, the 'generic' set. The sixteen rombiks of ROMBIX-16 include four sin-
gle rhombs (keystones) and twelve connected pairs of rhombs (twins). These sixteen piec-
es can be arranged in a variety of ways to tile the regular 16-gon, which is the only con-
vex arena in which they can be arranged.

Some of the topics treated in this manual concern properties that are unique to
ROMBIX-16, but I have searched also for properties of ROMBIX that depend on n in a
systematic way. I have found, for example, that for certain values of n, the underlying
set of rhombs ('SRI21l') from which the ROMBIX-2n set is constructed has special equi-
partitioning and rearrangement properties that can be explained by the application of
elementary number theory. Alan Shorb collaborated with me on these two problems
[Schoen and Shorb 1994]. Equi-partioning is concerned with distributing the rhombs of
SRI2n among congruent convex shapes. Rearrangement means arranging the rhombs of
SRI21lto tile a convex region that is not congruent to the regular 2n-gon. These topics are
the subject of an article, written jointly with Alan Shorb, that will be published shortly.
They are also treated in the forthcoming book about ROMBIX.

Another property of ROMBIX sets that I recently discovered-and proved by num-
ber-theoretic arguments-is described in §2.5:

Only if n-1 is prime can every pair of monochrome subsets form matched ladders.

I hope that readers will write to me about their own discoveries concerning ROM-
BIX. I leamed recently that in 1993, Michael Reid found an elegant solution to the Segre-
gated Color Circle Tiling problem for ROMBIX-16. This topic is described in the instruc-
tions in the ROMBIX-16 package. In Reid's tiling, no rombik of the awkward subset is
incident on the boundary of the tiling arena. Please let me know if you find a compara-
ble solution for any of the other three subsets.



I hope that readers do not object to my casual use of terms like tile, tiling, and Circle
Tiling. I use the word tiling for finite regions-whether simply-connected or not-as
well as for infinite regions, even though Irecognize that it is customary to reserve this
word for infinite regions only. Iuse the term Circle Tiling to denote an edge-to-edge ar-
rangement of the set of rombiks inside the regular 2n-gon arena.

I wish to express my sincere thanks to Donald Coxeter, Martin Gardner, and S0-
lomon Golomb, who first kindled my interest in the geometry of the plane. Ihave prob-
ably learned as much mathematics from reading Coxeter's books and articles as Ihave
from any other single source. As almost everyone knows, reading Gardner's columns
and books is the most enjoyable of all known ways to learn mathematics. Many puzzle
and game problems for ROMBIX were inspired by concepts originally developed by
Golomb for polyominoes. To cite just one example, consider the superposition problems
[Golomb 1994 p. U], which provided the model for the topics I have treated in §4.16-
4.18 of this manual. The first edition of Golomb's Polyominoes [Golomb 1965Jwas a joy
to read. The second edition [Golomb 1994Jis even more satisfyjng!

It was Roger Penrose's discoveries of the aperiodic tilings that bear his name [pen-
rose 1974] [Penrose 1978] that first led me to become interested in plane tilings by
rhombs. Ifirst learned about Penrose tilings by reading Martin Gardner's account in his
Scientific American column [Gardner 1977].

I thank Richard Guy for his description of ROMBIX(then called 'Cyclotome') in Vol-
ume 2 of Winning Ways foryourmathematiCJlI plays [Berlekamp, Conway, and Guy 1982].

I regularly consult Tilings and Patterns, by Branko GrOnbaum and Geoffrey Shephard
[Griinbaum and Shephard 1987],for both inspiration and information. .

: Ira Gessel and Don Redmond have both proved theorems related to combinatorial
properties of sets of rhombs. These theorems are not included in this manual, but they
will be described in the forthcoming book about ROMBIX.

Bill and Ruth Perk discovered that four identical ROMBIXsets can be arranged in a
large Circle Tiling that has c4 symmetry (cf. §4.4). This pattern was found by the Perks
when they modified the transformation of the CRACKED EGG for n=8 into the Triangle
Array (cf. §4.3).

Finally, I extend my warm thanks to Alan Shorb, whose mathematical insights and
proofs have enriched my understanding of the subject of Ovals (cf. §3).

Alan Schoen
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1. INTRODUCTION

THE SIXTEEN ROMBIKS OF ROMBIX-16

1.1 Composition of the ROMBIX-16 set

There are sixteen pieces in ROMBIX-16. Each is called a 'rombik'. Four of the rombiks
are single rhombs and are called keystones. (A rhomb is a parallelogram whose sides
are of equal length). The smaller face angles of the keystones are equal to 22.5· (n / 8),45·
(2n/8), 67S (3n/8), and 90· (4n/8), respectively. The other twelve rombiks are called
twins. Each twin is a non-convex hexagon formed by joining two single rhombs along a
common edge. The edges of all rombiks are of the same length.

Verify that the twelve twin rombiks of ROMBIX-16 correspond to the twelve
distinct ways in which rhombs congruent to the four keystone rhombs can be
combined in pairs to form non-convex hexagons.

Nine of these twelve twin rombiks are fraternal twins: each is composed of two
rhombs of different shape. The remaining three twins are identical twins: each is com-
posed of two rhombs of the same shape, joined to make a chevron-shaped rombik.

The cavity in the ROMBIX-16 tray, which is in the shape of a regular sixteen-sided
polygon, is called the arena. (The '16' in the name ROMBIX-16 refers to the number of
sides of the arena. It's just a coincidence that the number of rombiks in this set is also
sixteen.) The sixteen rombiks can be arranged inside the arena in a great variety of pat-
terns called Circle Tilings. The exact number of Circle Tilings is unknown, but I conjec-
ture that there are two thousand or more.
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1.2 The CRACKED EGG and Monochrome Subsets

The CRACKEDEGG, shown at the right, is the only orderly
Circle Tiling. All other Circle Tilings are defined as chaotic.

The rombiks in ROMBIX-16are colored so that they define
seven monochrome strips-or ribbons-when they are arranged
to tile the CRACKED EGG. The ribbons come in four colors:
green, yellow, red, and blue. Each collection of rombiks of a
given color defines a monochrome subset. (Wewill usually refer to
it simply as a subset.)

CRACKED EGG
ROMBIX-16)

The blue subset has a special characteristic that distinguishes it from the other three:

Each of the blue twins is an identical twin, while the twins in the other three sub-
sets are all fraternal twins.
Identical twins are symmetrical; fraternal twins are unsymmetrical.
Because of their symmetry, the blue twins are less versatile than the twins in the
other three subsets. We therefore call the blue subset awkward and each of the
other three subsets graceful.

Verify that

(a) every twin rombik in the awkward subset is an identical twin;

(b) every twin rombik in each graceful subset is a fraternal twin.

1.3 Monochrome subsets all have the same area

Verify that the inventory of rhombs in each of the four subsets is the same,
and that all four of the subsets therefore have the same area.

1.4 Composition of the set ROMBIX-2n

ROMBIX-16is just one of a theoretically infinite number of ROMBIXsets. Each set is
composed of one specimen of every concave twin that can be formed from a pair of the
(~)rhombs that tile the regular 2n-gon, plus one specimen of each of the different shapes
of rhomb in this set.

The order of a ROMBIXset is equal to n, which is equal to half the number of sides of
the regular polygon that defines the arena for the set. There is a ROMBIXset of order n
for every positive integer n~. For the trivial case n=2, ROMBIX-4consists of only a sin-
gle square. The interesting sets are those for which 1124.ROMBIX-16has been found to J

be the most versatile of all ROMBIXsets, but some sets of other orders have distinctive
properties that are not discussed here.

2
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The mathematical notation 'LnumberJ' means 'the integer part of number', i.e., the in-
teger that remains after the fractional part of number is thrown away. For example,
Lnl2J is equal to 4 for both n=8 and n=9. The smaller face angle of every rhomb in the
rombiks of ROMBIX-2n is equal to jrrl n (1 5,j 5, LnI2J ); j is called the principal index of
the rhomb. Each of the L(n+1)I2J monochrome subsets is identified by its subset num-
ber. For even n, the subset number is equal to the principal index of the keystone in the
subset. Subset numbering for odd n is defined below.

Verify that in ROMBIX-16, subset 1 is green, 2 is yellow, 3 is red, and 4 is blue.

The total number of rombiks in the set ROMBIX-2n is equal to Ln2/4J. Of this num-
ber, Lnl2J are keystones, and L«n-1) 12)2J are twins. Of the twins, L(n-1)/2J are identical,
andL«n-2)12)2J are fraternal.

For odd n, the keystones are sequestered into a single
small subset-subset number (n+1)/2; the twin rombiks are
distributed among the remaining (n-1) 12 subsets. This scheme
is illustrated by the coloring of the CRACKED EGG for 11=9,
shown at the right. The area of the keystone subset is equal to
exactly half the area of each of the twin subsets. Subset num-
bers increase from 1 to 4 with increasing shading. The ribbons
on the right of the Crack are vertical, while those on the left are
roughly horizontal.

CRACKED EGG
(ROMBIX-18)

The distribution of the colored ribbons in the CRACKED EGGS for n=8 and 11=9 il-
lustrates a general scheme for partitioning ROMBIX sets of any integer order n into
monochrome subsets. This scheme has the following consequences:

For even n, there are n 12 subsets of equal area; each subset contains n 12-1 twins and
one keystone.

For odd n, there are (n-1)/2 subsets of equal area, each of which contains (n-1)12
twins. The (n-1) 12 keystones are sequestered into a single subset whose area is equal
to half the area of each of the other subsets.

The distinction between graceful and awkward subsets holds for both odd and even
n. For every order n, the subset whose twins are all identical twins is called awkward,
while all other twin subsets are called graceful.

Why is it impossible to tile a regular polygon that has an odd number of sides
with rhombs?

2. LADDERS

2.1 Definition of ladder

A ladder is a strip of rhombs or rombiks, with parallel rungs, that extends from one
edge of a Circle Tiling of the regular 2n-gon arena to the opposite edge. It is comprised
of n-1 rhombs. There are n ladders in every Circle Tiling of the arena.
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In the chaotic Circle Tiling of ROMBIX-2n
shown at the right, one ladder is shown in
white. Observe that the indices of the slopes of
the sides of the rhombs in this ladder assume
each of n-1 possible integer values. Coxeter
[Rouse Ball and Coxeter 1962]has proved that
this property holds for every ladder, in Circle
Tilings of every order n.

LADDER FOR 11=8

Construct the CRACKED EGG Circle
Tiling for ROMBIX-16. Examine the seven
rhombs in each of the eight ladders, and
verify that the slopes of the sides of these
rhombs assume n-1 different values.

The six symmetrical
ladders that can be con-
structed from rombiks of a
single subset for n=14 are
shown at the right.

1

(Why are there only
six-not seven-sym-
metrical monochrome
ladders for n=14?)

THE SIX SYMMETRICAL MONOCHROME LADDERS
FOR n=14

Why is reflection symmetry the only allowed kind of symmetry for a ladder,
whether monochrome or not?
For odd n, there are no symmetrical monochrome ladders. Why?

Mathematical aside:

For any even positive integer n, let s = the subset number for a graceful subset.
Then

(a) if n-1 is an odd prime (viz., n = 4, 6, 8, 12, 14, 18, 20, ...), the rombiks of every
graceful subset s can be arranged to tile one symmetrical ladder;

(b) if n-1 is composite (viz .., n = 10, 16, 22, 26, 28, 29, ...), the rombiks of every
graceful subset s can be arranged to tile one symmetrical ladder if and only if
n-l and nl2 - s are relatively prime (i.e., have no common divisor). Other-
wise, no symmetrical ladder for subset s is possible.
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These and other properties of ladders are proved in a technical note entitled Some
combinatorial properties of heterosets of even order n [Schoen 1994]. This report is
available, at no cost, on request from the author. Write to:

Prof. Alan Schoen
Dept. of Electrical Engineering
Southern Illinois University
Carbondale, IL 62901.

In §2.5 (below), we make use of some of the properties of ladders that are proved in
[Schoen 1994].)

2.2 Symmetrical ladders for ROMBIX-16

Construct a symmetrical ladder from the four rombiks of one of the three graceful
subsets. Place this ladder inside the tray, and try to complete a Circle Tiling with the re-
maining twelve rombiks without modifying the symmetrical ladder. This problem has a
solution for two of the three graceful subsets, but not for the third!

2.3 The number of different shapes of monochrome ladders for ROMBIX-16

Arrange the four rombiks of each graceful subset to form a ladder. There are 96 dif-
ferent shapes of ladders for each graceful subset.

Next, arrange the four rombiks of the awkward (blue) subset to form a ladder.
Choose a shape that is different from that of the backbone ladder of the CRACKED
EGG. There are altogether 48 different shapes of blue ladders.

2.4 The number of different shapes of monochrome ladders (even n)

Let a (n) = the number of different shapes of monochrome ladders for the awkward
subset, and

g(n) = the number of different shapes of monochrome ladders for the graceful
subset.

It is easily proved that a(n) and g(n) are given by the following expressions:

n=4 a(4) = 1; g(4) = 2.

n>4 ain) = 6·8·10···n;
g(n) = 2 a(n).

Table 2.4.1 shows the values of g(n) and a(n) for 4~n~30.
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Table 2.4.1
The number of distinct ladders which can be tiled by

graceful subsets and by awkward subsets
gIn) = the number of graceful subsets
a(n) = the number of awkward subsets

4s~30 (n even)

n gIn) a(n)

4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
12
96

960
11,520

161,280
2,580,480

46,448,640
928,972,800

20,438,401,600
490,497,638,400

12,752,938,598,400
357,082,280,755,200

10,712,468,422,656,000

1
6

48
480

5,760
60,640

1,290,240
23,224,320

464,486,400
10,218,700,800

245,248,819,200
6,376,469,299,200

178,541,140,377,600
5,356,234,n 1,328,000

2.5 Matching ladders (even n only)

We now briefly summarize some features of the problem of matching ladders-<:on-
structing two different monochrome ladders which have the same overall shape. This
problem is defined for even n only. (Why is it not defined also for odd n?)

We define the orientation of a rombik to be face up (U) if it is oriented in the same
way as in the CRACKEDEGG arranged with keystones on the right, as shown in the il-
lustration for n=8 on p. 2, and face down (D) otherwise.

The necessary and sufficient conditions for a pair of subsets to form matched lad-
ders are derived in [Schoen 1994].It is proved there that iff n-1 is prime, then

(a) every pair of distinct subsets forms exactly one pair of matched ladders;

(b) the orientation of all the rombiks of a given subset in a matched ladder is the
same-either face up (U) or face down (D). The orientations of the rombiks in
two matched ladders are UU, UD, or DD, respectively.

(c) two sets of the rombiks of each graceful subset can be arranged to form a pair
of matched ladders, each of which is related to the other by reflection in the
transverse midline of the ladder outline. The orientations of the rombiks in the
two ladders are UD, respectively.
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If n-1 is composite, then the ladder matching behavior of a pair of monochrome sub-
sets depends on the cycle distance between the subset numbers for the pair of subsets
[Schoen 1994]. The cycle distance D(j, k) between subsets j and k is defined as follows:

D(j, k) = I k - j I
n-1- I k - j I

if I k - j I <n 12, and
if I k - j I ~ n 12.

The cycle distance corresponds to the shorter of the two circular arcs that join points
j and k in a circle diagram. Such a diagram consists of n-1 equally spaced points, on the
boundary of a circle, that are labelled consecutively from 1 to n-1.

Ladder matching is illustrated below by the twelve possible pairs of matched lad-
ders for n=8. The first of the two integers which label each pair is the index of the slope
of the sides of the keystone in the rightmost subset of the pair. The second of the two in-
tegers is the index of the slope of the sides of the keystone in the leftmost subset of the
pair. (The subset numbers for n=8 are 1, 2, 3, and 4. The labels 5,6, and 7, which are the
'4-complements' of subset numbers 3, 2, and 1, respectively, identify these same subsets.
Subset 4 is its own 4-complement.)

1,2 1,3 1,4 1,5 1,6 1,7

2,3 2,4 2,5 2,6 3,4 3,5

THE MATCHED LADDER PAIRS FOR n=B
No shading: face up

Light shading: face down
Dark shading: awkward subset

(The descriptions 'face up' and 'face down' refer to the
orientation of the rombiks in the Cracked Egg Circle Tiling.)
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Finally, let us prove that for every pair of matched ladders, the keystones of the re-
spective subsets lie at opposite ends of the ladder outline.

THEOREM 2.5.1
Let LAS denote the outline of a ladder that can be tiled by either of two distinct
monochrome subsets A and B. Let TA be a tiling of LAS by subset A and Ts a
tiling of LAS by subset B. Then

KA' the keystone of A, occupies the rhombic site at one end of TA' and
Ks, the keystone of B, occupies the rhombic site at the opposite end of Ts.

Suppose-scontrary to the assertion of the theorem-that in the covering of LAB by
subset A in the tiling TA' KA occupies not a terminal rhombic site of LAB but an interior
rhombic site of LAB.Because all of the other rombiks of subset A are twins, the two lad-
der segments of LAB that lie on opposite sides of ~, which we will call end segments,
each contain an even number of rhombs. Let us call one of these end segments E1 and
the other E2.

Consider how the rhombic site occupied by KA in TA is covered in the tiling TB.This
site cannot be covered by KB, because KA and ~ are not congruent. Therefore it is cov-
ered in TB by a rhomb in one of the twins of subset B. That twin, which we will call r,
covers both KA and an adjoining rhombic site that is in either E1or E2. Let us say that it
is in E1. The covering in TB of the other rhombic sites in El by rombiks from B must in-
clude KB' since the number of these sites is odd. But that implies that in TB' E2 is covered
entirely by twins from B.That is impossible, since E2 is covered in TA entirely by twins
from A, and there are no twins in B that are congruent to any of the twins in A. We con-
clude that ~ cannot cover an interior rhombic site of LAB, and that it must therefore
cover a terminal rhombic site of LAB'

A similar argument applied to subset B implies that KB covers a terminal rhombic
site of LAB in the tiling TB. But ~ cannot cover the same end of LAB as KA, because it is
not congruent to KA. Hence it covers the opposite end.

COROLLARY 2.5.1
No more than two monochrome subsets can tile the same ladder outline.

We leave the proof to the reader.
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3. OVALS

3.1 Definition of Ovals

An Oval is a centro-symmetric convex polygon, with sides of unit length, each of
whose turning angles is a positive integer multiple of rr/n (integer n~2). (The turning
angle at a vertex of a polygon is the supplement of the interior face angle at that vertex.)
Every Oval has an even number of sides, which are arranged in g parallel pairs. An
Oval with 2g sides is called a I g-Oval' and is determined by the values of n and g and by
its Turning Angle Index Sequence ('T AIS'), which is a list of the turning angle indices
for any consecutive set of g of its vertices.

It is conjectured that for every positive inte-
ger n~2, every g-Oval can be tiled by a subset of
the rombiks in ROMBIX-2n. (Coxeter proved

that every regular 2n-gon can be tiled by (2)
rhombs whose sides are of the same length as
those of the regular 2n-gon [Ball and Coxeter
1962]. We call this set of rhombs the 'Standard
Rhombic Inventory', or SRI2n-) I have proved
that every g-Oval can be tiled by a subset of
SRI2w The smaller face angle of each rhomb in n=45; g=9
SRI211is equal to br/n fk e jl, LnI2J]);kiscalled TAIS = [9 B 2 3 7 645 1)

the principal index of the rhomb. When n is odd,
there are n specimens of each of the (n-1)/2 shapes of rhomb in SRI2,,' When n is even,
there are n specimens of each of the nl2-! non-square rhombs in SRI211,but there are
only n 12 specimens of the square rhombs. The g-Oval illustrated above, for which n=45
and g=9, is shown tiled by 36 rhombs in the STRAWBERRY pattern. Note that for every

integer n, (2) is a triangular number. (For n<2, (2) is defined to be equal to zero.)

The inventory of rhombs needed to tile an Oval can be derived from its TAIS by con-
structing the Oval Index Triangle. This construction is described below for the 9-0val for
n=45 that is shown above. .

(a) Delete the first turning angle index from the TAIS, thereby obtaining the se-
quence of indices for the upper interior face angles of the rhombs in the re-
ceptacle-the cluster of rhombs that are incident on the stem vertex of the
Oval. ('Receptacle' is the term used by botanists to denote the part of a plant
that holds the fruit.) After deleting the first turning angle index from the
TAIS of the Oval illustrated above, we obtain the sequence [82376451].
Let us call this sequence 'the truncated TAIS'.

8 2 3 764 5 1

(b) To form the first row of the Oval Index Triangle, enter the truncated TAIS.
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(c) In the second row of the Oval Index Triangle, directly below each pair of
consecutive indices in the first row, enter their sum.

8 2 3 7 645 1
10 5 10 13 10 9 6

(d) In position k of the i th row (i ~ 3; k = 1, 2, ..., g-i), enter the sum of the indices
in the kth sequence (counting from the left) of i consecutive indices in the
first row. This kth entry in the ith row is also the sum of the two consecutive
indices in the (i-l)th row that lie immediately above it, minus the index in
the (i-2)th row that lies immediately above these two consecutive indices.

8 2 3 7 645 1
10 5 10 13 10 9 6

13 12 16 17 15 10
20 18 20 22 16

26 22 25 23
30 27 26

35 28
36

(e) In each row, replace every index j that is greater than Ln /2J by n-j. The Oval
Index Triangle is now complete.

8 2 3 7 6 4 5 1
10 5 10 13 10 9 6

13 12 16 17 15 10
20 18 20 22 16

19 22 20 22
15 18 19

10 17
9

(f) Count the number of occurrences Vq of the index q (q = 1,2, ...r Ln I2J) in the
Oval Index Triangle. The number of rhombs in the Oval for which the prin-
cipal index is equal to q is equal to vq, which is the qth component of the
Ln I2J-dimensional rhombic inventory vector ('RIV').

RIV = [1 1 1 1 2 2 1 1 2 5 0 1 2 0 2 2 2 2 2 3 0 3].

In a future edition of this manual, I will summarize solutions of the following in-
triguing problems concerning Ovals:

(i) For what values of n do there exist Ovals with RIV = [111 ... I]?
(ii) For what values of n can the rhombs in SRI211be arranged to tile another con-

vex polygon besides the regular 2n-gon?
(ill) For what values of n can the rhombs contained in an integer number of SRI211

sets be partitioned to tile an integer number of congruent Ovals?
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3.2 Monochrome 4-0vals

Use the three twin rombiks of any of the three graceful subsets of ROMBIX-16 to
construct a 4-0val-an Oval with eight sides. (For each graceful subset, there is only
one such Oval.) For which of the four subsets is it possible to combine the three twin
rombiks with the four keystones to construct a 5-0val (ten sides)?

3.3 Hollowing Out the CRACKED EGG (tiling by rombiks)

Remove n ribbons from the CRACKED EGG, one by one, beginning with the central
ribbon, to obtain a sequence of n Ovals of successively smaller sizes. Each ribbon re-
moved is the one that contains the largest number of rhombs. After a ribbon is removed,
form a smaller Oval from the remaining rombiks. For the first n-3 ribbons removed, this
requires that the tiled fragment on one side of the removed ribbon be joined to the tiled
fragment on the other side by a translation. The digon and the point, which are degener-
ate Ovals, are the last two Ovals in the sequence. (They are not shown in the sequence
above.)

3.4 Shaving the STRAWBERRY (tiling by rhombs)

Peel off n strips of rhombs from the STRAWBERRY, one after another, to obtain a
sequence of n Ovals of successively smaller sizes. In the ith strip (i = 1, 2, ..., n), there are
n-i rhombs, leaving a g-Oval for which g = n-i. The last two Ovals in the sequence are
the digon and the point (cf. §3.3).

11



3.5 Ovals Embedded in Circle THings by rombiks

If every edge of an Oval in a Circle Tiling by rombiks coincides with an external
(boundary) edge of a rombik, we classify the Oval as completely embedded. If one or more
edges of the Oval coincides with an internal edge of a twin rombik, i.e., an edge common
to the two rhombs that have been joined to make the twin, the Oval is called incompletely
embedded. The Oval at lower left, which is fully shaded, is completely embedded; the
partly shaded Oval at the right is incompletely embedded.

For at least some values of n, there exist Ovals that cannot be completely embedded
in a Circle Tiling by rombiks. We conjecture, for example, that the incompletelyembed-
ded Oval for n=8 shown above cannot be realized as a completely embedded Oval.

We treat both (a) the rhombs of SRI21l and (b) the {2n} as Ovals (ef the definition of
an Oval in §3.1). As described in §3.3, we also classify as Ovals (c) the point and (d) the
digon; the two edges of the digon are of the same length as a rhomb edge. The point is
called the null Oval; the digon is called the vacuous Oval. We denote all four of these ex-
ceptional classes of Ovals as trivial Ovals.

We conjecture that for every positive integer n, every non-trivial Oval can be real-
ized as the boundary of a set of rhombs in a Circle Tiling by rhombs, and also that every
non-trivial Oval can be embedded--either completely or incompletely-in a Circle
Tiling by a proper subset of the rombiks in ROMBIX-2n.

The illustrations on p. 13 demonstrate that at least twenty of the twenty-three non-
trivial Ovals for n=8 can be completely embedded in Circle Tilings for ROMBIX-16.

3.6 Pied 4-Ovals

Partition the twelve twin rombiks of ROMBIX-16 among four 4-Ovals, in each of
which there are:

(a) two rombiks of one color and one of a second color;
(b) three rombiks of one color.

12
----------



611,521,422,332

3311

32111

5111

431,3212

31211

4211,3221

3131

22211

211211 212111

4121

2222

22121

2111111

Twenty completely embedded ovals for n=8
Each shaded oval is identified by its Turning Angle Index Sequence (TAIS)

3.7 The association of Ovals in conjugate pairs.

Table 3.7.1 shows the number of g-Ovals for 1~n:S16. Inspection of the table reveals
that for n~16, the numberM(n, g) of g-Ovals is exactly equal to the number M(n, n-g) of
(n-g)-Ovals. On closer inspection of the data for ~13, I discovered that if gl + g2 = n and
(J = 1 gl - g21 /2, then for every gl-Oval 01, there is a unique g2-0val 02 with the same
symmetry as 01, and that the areas of 01 and O2 differ by exactly (J kernels (the kernel is
defined here as the set of n-1 rhombs contained in a ladder). I call the Ovals ~ and 02
canjugate. The data also suggested that if n is a prime congruent to 3 (mod 4), then an in-
teger number of sets of the rhombs in SRI211can be partitioned into congruent Ovals (in
exactly two different ways). Alan McK Shorb and I subsequently proved these and a
number of other properties of Ovals, using necklace theory and some theorems from el-
ementary number theory. An account of this work will be published elsewhere.

13



Table 3.7.1

M(n,g) values for 1 ~ n ~ 16

gO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

1 1 1 (2) The number in parentheses at the right of the row

2 1 1 1 (3) for Ovals of order n is the total number of g-Ovals of order n.

3 1 1 1 1 (4)
4 1 1 2 1 1 (6)
5 1 1 2 2 1 1 (8)
6 1 1 3 3 3 1 1 (13)
7 1 1 3 4 4 3 1 1 (18)
8 1 1 4 5 8 5 4 1 1 (30)
9 1 1 4 7 10 10 7 4 1 1 (46)

10 1 1 5 8 16 16 16 8 5 1 1 (78)
11 1 1 5 10 20 26 26 20 10 5 1 1 (126)
12 1 1 6 12 29 38 50 38 29 12 6 1 1 (224)
13 1 1 6 14 35 57 76 76 57 35 14 6 1 1 (360)
14 1 1 7 16 47 79 126 133 126 79 47 16 7 1 1 (687)
15 1 1 7 19 56 111185 232 232 185 111 56 19 7 1 1 (1224)
16 1 1 8 21 72 147 280 375 440 375 280 147 72 21 8 1 1 (2250)

Data describing the conjugate relations for the thirty Ovals for n=8 are listed in Table
3.7.2. The thirty Ovals are numbered from -1 to 28. No. -1 is the Null Oval (point), and
no. 0 is the Vacuous Oval (digon). We adopt the convention that the TAIS for the Null
Oval is written as '[]'.

Curiously, six of the eight 4-Ovals are self-conjugate, but 4-0val no. 12 is conjugate to
4-Oval no. 13. The algorithm that defines conjugacy and thereby specifies which Oval is
conjugate to a given Oval is described in the forthcoming article written jointly with
Alan Shorb. (It is based on the representation of the TAIS for the two conjugate Ovals as
complementary sequences of integers on a 'circle diagram', or necklace.)

14



Table 3.7.2
The Conjugate Pairs of Ovals for n = 8

u = (2 2 2 1) (RIV of kernel)

Oval TAIS RIV TAIS RIV No. Symmetry
no. of of of of of group

Oval Oval Conjugate Conjugate Conjugate
Oval Oval Oval

g=Q

-1 [ ] (0000) + 4u [11111111] (8884) 28 d16

g=1

0 [8] (0000) + 3u [2111111] (6663) 27 d2

g=1

1 [71] (1000) + 2u [311111] (5442) 23 d2
2 [62] (0100) + 2u [221111] (4542) 24 d2
3 [53] (0010) + 2u [212111] (4452) 25 d2
4 [44] (0001) + 2u [211211] (4443) 26 d4

g=J

5 [611] (2100) + u [41111] (4321) 18 d2
6 [521] (1110) + u [32111] (3331) 19 c2
7 [431] (1011) + u [31121] (3232) 20 c2
8 [422] (0201) + u [22211] (2422) 21 d2
9 [332] (0120) + u [22121] (2341) 22 d2

~

10 [5111] (3210) [5111] (3210) 10 d2
11 [4211] (2211) [4211] (2211) 11 c2
12 [4121] (2121) [3311] (2121) 13 d2
13 [3311] (2121) [4121] (2121) 12 d2
14 [3221] (1221) [3221] (1221) 14 c2
15 [3212] (1230) [3212] (1230) 15 d2
16 [3131] (2022) [3131] (2022) 16 d4
17 [2222] (0402) [2222] (0402) 17 d8

15



g::,2

18 [41111] (4321) -u [611] (21 00) 5 d2
19 [32111] (3331) -u [521] (1110) 6 c2
20 [31121] (3232) -u [431] (1011) 7 c2
21 [22211] (2422) -u [422] (0201) 8 d2
22 [22121] (2341) -u [332] (0120) 9 d2

g=Q

23 [311111] (5442) - 2u [71] (1000) 1 d2
24 [221111] (4542) - 2u [62] (0100) 2 d2
25 [212111] (4452) - 2u [53] (0010) 3 d2
26 [211211] (4443) - 2u [44] (0001) 4 d4

sa
27 [2111111 (6663) - 3u [8] (0000) 0 d2

g=B

28 [11111111] (8884) - 4u [ ] (0000) -1 d16

3.8 Strictly Convex Ovals and Stretched Ovals

We call a g-Oval Strictly Convex if its boundary edges are all of the same length. If
we relax this requirement, we obtain a class of polygons called Stretched Ovals.

DEFINITION 3.8.1
A Stretched Oval is a centro-symmetric convex polygon, each of whose turning
angles is an integer multiple of xln (integer n~2), and each of whose edges is of
length equal to some integer multiple of its smallest edge length.

The reader should be able to prove easily that every
Stretched Oval can be tiled by replicas of the rhombs in SRI2n'
There is no limit to the number of rhombs contained in a
Stretched Oval. The Stretched Oval at the right, which is tiled
by rombiks drawn from two sets of ROMBIX-16, contains 32
rhombs; SRI16 contains 28 rhombs. Even if a Stretched Oval
contains fewer rhombs than the number in SRI2," it may re-
quire more specimens of a given shape of rhomb than are con-
tained in SRI2n' In some cases, a Stretched Oval that can be
tiled by the rhombs contained in SRI2J1 cannot be tiled by the
rombiks of a single ROMBIX set. (Construct an example.)

16



Since the only sets of parallel edges in a Circle Tiling by rhombs are rungs belonging
to the same ladder, no edges incident on the same vertex are collinear. Consequently it
is impossible for a Stretched Oval to be embedded in a Circle Tiling by rhombs.

The rombiks of ROMBIX-16 can be partitioned among 3, 4, 5, 6, 7, or 8 Strictly Con-
vex Ovals, but a partition into two Strictly Convex Ovals is impossible, because 28 can-
not be partitioned into two triangular numbers. There is, however, an elegant way to
partition the rombiks of ROMBIX-16 into two congruent Stretched Ovals. It is even possi-
ble to segregate the four monochrome subsets in tilings of this pair of Stretched Ovals
so that each of the Ovals is tiled by exactly two subsets whose common boundary is of
the same shape in the two Ovals.

A computer search reveals that 7 of the first 15, 64 of the first 100, and 775 of the first
1000 triangular numbers can be partitioned into two triangular numbers.

What fraction of the first 10,000 triangular numbers can be partitioned into two
(non-zero) triangular numbers? Can all but a finite number of triangular numbers
be partitioned into two triangular numbers?

THEOREM 3.8.1
If S is a Strictly Convex Oval and is tiled by p rhombs of SRI2n, then p is a tri-
angular number t(r) = 0, 1,3, 6, ..., r(r+1)12, ... (r=O, 1,2, ... ).
If we denote the number of edges of S by 2g(r), then g(r) = r+1.

As a consequence of Theorem 3.8.1, a partition of SRI21lor of ROMBIX-2n into a set
of Ovals implies the representation of a triangular number as the sum of a set of smaller
triangular numbers. This suggests the

CONJECTURE3.8.1
Let t(r) be any triangular number ~10. Then for every k E'. 13,r+l), t(r) can be
expressed as the sum of k non-zero triangular numbers, which are not necessari-
ly distinct.

Table 3.8.1 shows examples of partitions of the triangular numbers 10, 15, 21, 28, 36,
and 45.

If Conjecture 3.8.1 is true, then for n>4 the rhombs in SRI21lcan be partitioned into k
Strictly Convex Ovals tiled by rhombs, for every k e [3, n] (since n=r+l). I have found
that for some values of n, there are too few keystones to allow partitions of ROMBIX-2n
into nor n-l Ovals, but I have not found cases in which the partitioning of ROMBIX-2n
into more than three (but fewer than n-l) Ovals is impossible.

It is a well-known theorem [Beiler 1966] that every integer is either a triangular
number, the sum of two triangular numbers, or the sum of three triangular numbers.
However, I know of no references to Conjecture 3.8.1.
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Table 3.8.1

Examples of partitions of triangular numbers t(r) = 1(1+1)/2

Into k smaller triangular numbers (3$k$I+1)

for 4$1$9

k = 3 4 5 6 7 8 9 10

1 t(l) Partition
QO.....

4 10 1+3+6 1+3+3+3 1+1+1+1+6

5 15 3+6+6 1+1+3+10 1+1+1+6+6 1+1+1+3+3+6

6 21 1+10+10 3+6+6+6 3+3+3+6+6 1+1+1+6+6+6 1+1+1+3+3+6+6

7 28 3+10+15 6+6+6+10 3+3+6+6+10 1+1+3+3+10+10 1+3+3+3+6+6+6 1+1+1+1+6+6+6+6

8 36 6+15+15 6+10+10+10 3+3+10+10+10 1+1+3+6+10+15 1+1+3+3+3+10+15 1+3+3+3+6+10+10 1+1+1+1+3+3+6+10+ 10

9 45 15+15+15 10+10+10+15 1+3+10+10+21 1+3+6+10+10+15 3+3+3+6+10+10+10 1+1+1+6+6+10+10+10 1+3+3+3+3+6+6+ 10+10 3+3+3+3+3+6+6+6+6+6



4. MISCELLANY

4.1 Chaotic Circle THings for ROMBIX-2n sets for n»8

Chaotic Circle Tilings by the rombiks of ROMBIX-2n have been found by the author
for all n5:16. Shown below is an example of a chaotic Circle Tiling for n=16.

Chaotic Circle Tiling for n=16 (64 rombiks)

4.2 A Macintosh program for drawing the CRACKED EGG

Finding a chaotic Circle Tiling for a ROMBIX set of order n>12 or so is likely to be
time-consuming. Whatever your preference, if you wish to make a set of rombiks of
order n;tB, you may order a floppy containing a True BASIC program for the Macintosh
called 'Cracked Egg Pattern' that prints the outlines of the rombiks in the CRACKED
EGG for any ROMBIX set of order n 5:100,000. A listing of the program is included with
the floppy. The program prints a drawing of the CRACKED EGG. You can freely select
the size of the output image, a sample of which is shown on p. 20. A True BASIC Run
Time program is also installed on the floppy. Cracked Egg Pattern works under System
6.08, but not System 7. After February, 1995, when True BASIC will be upgraded to Sys-
tem 7, I will be able to send you a version of Cracked Egg Pattern for System 7. In-
formation about how to order this program is provided at the end of this manual.

I disclaim responsibility for whatever mental anguish may result from your attempt
to complete a chaotic ROMBIX Circle Tiling for large n.
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The CRACKED EGG for n=20

4.3 The Triangle Array for ROMBIX-40

On p. 21 is shown an example for n=20 of a triangular arrangement of the rombiks
of ROMBIX-2nthat can be obtained by a simple transformation applied to the columns
('ribbons') of rombiks in the CRACKEDEGG.

20
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An orderly triangular arrangement of the 100 rombiks of ROMBIX-40

4.4 Concentric Nested Ring tilings by ROMBIX-2n sets

The illustration on the cover shows an orderly Concentric Nested Ring tiling for
ROMBIX-40, a single set of which contains 100 rombiks. In the center of this pattern is a
single set arranged in the CRACKED EGG Circle Tiling. This central core is surrounded
by rings containing 8,16, and 24 sets, respectively.

In an alternative construction, the core contains four sets arranged in the Expanded
CRACKED EGG pattern, which is shown on p. 22. The core of this pattern requires rings
containing 12, 20, 28, ... sets, respectively.

Orderly Concentric Nested Ring tilings are defined for ROMBIX sets of all orders.
Chaotic Concentric Nested Ring tilings have also been found for the first few rings, for
several values of n. It is conjectured that such chaotic tilings are possible for rings of all
orders, for any ROMBIX set.

A four-set large Circle Tiling with c4 symmetry, which was discovered by Bill and
Ruth Perk, is composed of four congruent simply-connected sectors, each tiled by one
ROMBIX set. A sector can be derived from the Triangle Array (cf. §4.3) by reversing the
left-right orientation of alternate columns in the Array and then collapsing the columns
horizontally into a compact assembly.
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ORDERLY CONCENTRIC RING PATTERN FOR ROMBIX-16
THE CORE OF THE PATTERN IS THE EXPANDED CRACKED EGG (FOUR SETS)

4.5 Chaotic Eccentric Nested Ring tHings by ROMBIX-16 sets

Examples of Eccentric Nested Ring tilings for ROMBIX-16 are shown on p. 23 for the
first annular ring surrounding a single-set core, for all twelve allowed values of the ec-
centricity, which is defined on p. 24. It appears that there exists no general recipe, analo-
gous to the CRACKED EGG algorithm, for tiling orderly Eccentric Nested Rings.

There is one value of eccentricity for n=8 for which I have not yet found a tiling so-
lution for the 3-set ring. H you carefully examine the illustrations of the twelve 3-set
rings on p. 23, you will discover that in one of them, a certain twin rombik T appears
twice, while its alternative isomeric form appears four times. Iconjecture, however, that
a valid tiling solution is possible. Please let me know if you find one!

I conjecture that there exist unbounded Eccentric Nested Ring tilings for every al-
lowed value of eccentricity, for ROMBIX sets of all orders.
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The eccentricity I': of an annular ring is defined as follows:
Let D = the distance between the centers of the two regular polygons that define the inner and outer

boundaries, respectively, of the ring. Let Rmin = the circumradius of the inner boundary polygon. Then
I': = D /Rmin.
An equivalent definition is as follows: Let t""" = the projected radial length of the strip of rhombs

that spans the ring sector of maximum radial width. Let t min be defined similarly for the ring sector of
minimum radial width. Then tladder = I""" + tmirv the projected radial length of a complete ladder, and

I': =(t""" - lmin)/ (t""" + trnnJ·

For ROMBIXsets of any order, Nested Eccentric Ring patterns have the structure
described in Table 4.5.1.

Table 4.5.1
Pattern structure of Nested Eccentric Rings

Edge length m
of outermost ring

No. of sets
in outermost ring

Total no. of sets, including
outermost ring and all

inner rings

SINGLE-SET
CORE

1
2
3
4

(etc.)

1
3
5
7

(1
(1+3
(1+3+5
(1+3+5+7

= 1 = 12)
4 =22)
9 =32)

= 16 =42)

The allowed values for the eccentricity are found by determining every set of inven-
tory coefficients {a! .a2 •...• an-! } (t1k=O or 1) that satisfy both of the following inequalities:

n-I

1- L UkCOS k:
_-"k_=!'-- > tanlL

n-I 2nL a« sin k:
k=1

The value of the inventory coefficient for rhomb k (k= 1, 2, ..., n-l) determines wheth-
er or not rhomb k is included in a ladder segment in the sector of minimum radial width
in the ring: only if the inventory coefficient for rhomb k is equal to one is rhomb k in-
cluded. Rhomb k is defined as a rhomb for which the angle between its bottom rung
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edge and its left edge is equal to kn/ n. The existence of a solution set is a necessary con-
dition for the existence of the corresponding Eccentric Nested Ring structure tiled by
rhombs. I have been unable to prove, however, that the existence of a solution set is suf-
ficient to guarantee that the Eccentric Nested Ring structure exists. Whether a Ring
structure can be tiled by a suitable odd number of sets of rombiks can be determined
only by trial and error.

Table 4.5.2 lists the twelve solution sets for rhombic inventory coefficients for n=8.
These data were obtained from a computer program that generates all possible solution
sets for any ~2.

Table 4.5.2
The twelve Eccentric Nested Ring structures for n=8

INVENTORY COEFFICIENTS
E 1 2 3 4 5 6 7

1.000000 0 0 0 0 0 0 0
-.844759 1 0 0 0 0 0 0
-.718695 0 1 0 0 0 0 0
-.632458 0 0 1 0 0 0 0
-566454 1 0 0 0 0 1 0
-.480217 1 0 0 0 1 0 0
-.414214 1 1 0 0 0 0 1
-.351153 0 1 0 0 1 0 0
-.327976 1 0 1 0 0 0 1
-234633 0 0 1 1 0 0 0
-.198912 1 0 1 0 0 1 0
-.082392 1 0 0 1 1 0 0

Shown below is a tiling of three Eccentric Nested Rings, surrounding a
CRACKED EGG core, for ROMBIX-16.
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4.6 Ten Tiling Tips

I offer here several suggestions that are likely to be found useful for finding chaotic
Circle THings by ROMBIX sets for n~6. The first two of these tips are not just sugges-
tions-they are requirements. The other eight tips are rules derived from experience.

1. COLLINEAR EDGES
Never place one rombik PI next to another rombik P2 in such a way that an edge of
PI is collinear with an edge of P2' This rule applies also to the interior edges of twin
rombiks. (An interior edge is defined as an edge that is common to the two rhombic
modules of a twin rombik.) The only parallel edges in a Circle Tiling are edges that
are rungs of the same ladder.

2. LADDER COMPOSITION
Avoid placements of rombiks which violate the Ladder Composition Rule [Ball and
Coxeter 1962]:

In every Ladder there are n-1 rhombs.
Each non-square rhomb occurs twice-once leaning to the left, and once leaning
to the right.
If n is even, the Ladder contains one square rhomb.

When chaotic Circle Tilings for large n (e.g., n»8) are attempted, it is found that un-
less the Ladder Composition Rule is consciously applied, it is likely to be violated.
For smaller values of n, such violations are less likely to occur, once sufficient ex-
perience has been acquired so that faulty configurations can be recognized at a
glance. However, if tip no. 4 in this list ('Work from one side to the other') is ig-
nored, it becomes difficult to identify faulty configurations quickly. It is then neces-
sary to check carefully for violations of the Ladder Composition Rule.

3. SAVE THE KEYSTONES
Try to postpone inserting the keystones until you have nearly finished the tiling. It is
recommended that they be saved until most of the twins are already in place, since
single rhombs will always fit into any legal hole. (This rule becomes steadily more
important with increasing n.)

4. WORK FROM ONE SIDE TO THE OTHER
Begin the tiling by placing a rombik snugly against the boundary. As additional
rombiks are added, try to place at least some of them in such a way that as many of
their sides as possible coincide either with boundary edges or with sides of rombiks
already placed. Don't allow the boundary between the placed rombiks and the
empty part of the arena to become excessively long. On the other hand, if you main-
tain too smooth a boundary, you are likely to find it impossible to complete the
tiling (except in the case of the CRACKED EGG). It is usually desirable to maintain a
somewhat disorderly interface. Strive to create what the late Max Delbriick used to
call controlled chaos. (Of course, it is easier to recognize controlled chaos than it is to
define it!)
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5. GET RID OF THE SKINNY CHEVRON FIRST
The thinnest identical twin is in some respects the most awkward of all the rombiks.
It is likely to resist finding a place in the Circle Tiling if you don't place it early.

6. SWAPPING (STRADDLE AND EXCHANGE)
If all of the rombiks that have not yet been placed in the tiling are twins and don't fit
anywhere, don't immediately give up and start over again. Instead, search for a
place where an unplaced twin TI matches-and can therefore straddle-two sites in
the tiling occupied by a pair of rhombs that belong to a pair of twins T2 and T3 with
two common edges. After removing T2 and T3 and inserting TI, you may succeed in
rearranging the tiling in such a way that all of the rombiks eventually fall into place.
Of course you will have to fill the hole you made when you removed T2 and T3 and
inserted TI!

7. ISOMER SWAPPING
Every twin rombik that is neither an identical twin nor a twin that contains the
square rhomb is one of a pair of isomers: the two isomers of every such pair are com-
posed of the same two rhombs, but the rhombs are joined together along different
edges so that they form two twins of different shape. Suppose that Al and A2 are the
two isomers of twin A, and B is another twin. Suppose also that there exists a config-
uration composed of four rhombs which can be tiled either by Al and B or by A2 and
B. If such a configuration-containing Al, for example-appears in the tiling, but Al
is needed elsewhere in the tiling, then if A2 has not yet been placed, it can be ex-
changed for AI.

8. PAIR SWAPPING
It occasionally happens that a pair of twins A and B that share two edges also fit
somewhere else in the arena, and that two other twins not yet placed fit in the space
occupied by A and B and can therefore be exchanged for A and B.

9. OVAL TURNING
This technique often facilitates swapping. Every Oval is symmetrical at least by rota-
tion through a half-turn (c2 symmetry). Some Ovals have rotational symmetry c4, c6,
etc., and some Ovals are symmetrical by reflection in two or more lines-they have
symmetry d2, d4, etc. Depending on its symmetry, an Oval can be rotated by a half-
turn, or quarter-turn, etc. Ovals with reflection symmetry can be reflected in any of
their lines of reflection. We call all such transformations Oval turning. Oval turning
often makes it possible to place one or more rombiks in a strategically better place.

10. COMBINING KEYSTONES
It is useful to place as many of the keystones as possible next to each other in an un-
finished tiling, particularly with sets for which n»8. A fraternal twin for which
there is no matching hole in the tiling can always replace two adjoining keystones if
they correspond to the rhombic modules of that twin and are suitably oriented with
respect to each other. The two keystones then become available to occupy sites else-
where in the tiling. Oval turning is sometimes an effective way to force the required
migration of separated keystones into adjoining positions.
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4.7 Time required for a chaotic Circle Tiling

When one tries to find chaotic Circle Tilings for sets larger than ROMBIX-16, it is
discovered that it takes about twice as long to find a Circle Tiling for a set of order n+1
as it does for a set of order n. Let KIl denote the ratio Tn+l/T n of average solution times
for sets of order nand n+1. If the average solution time were proportional to the num-
ber of rombiks in the set, Kn would decrease with n, because the fractional increase in
the number of rombiks per set decreases with n. The ratio L(n+1)2/4J / Ln2/4J of the
number of rombiks in the set of order n+1 to the number in the set of order n is equal to

1+ L(n I2)Jl .
Experience suggests that KIl is nearly independent of n and that it has approximate-

ly the same value for different people, but it would require considerable effort to con-
firm this conjecture. Here we will simply assume that KIl is equal to 2 for every n. If we
also assume that the average solution time for ROMBIX-32-which has 64 rombiks-is
12 hours, we obtain the rough estimates of average solution times for ROMBIX sets for

n :520 shown in Table 4.7.1. These estimated values are in reasonably good agreement
with the author's recorded average solution times for Circle Tilings for ~16.

Table 4.7.1
Predicted solution times for chaotic Circle THings by standard ROMBIX sets

n days hours minutes seconds

2 2
3 5
4 10
5 21
6 42
7 1 24
8 2 49
9 5 38
10 11 15
11 22 30
12 45
13 1 30
14 3
15 6
16 12
17 1
18 2
19 4
20 8

A factor which contributes to the large value of KII is that the ratio of the number of
keystones to the total number of rombiks in the set decreases with n. This ratio is equal
to L(n+1)/2J-1. (This value suggests that KIl may be slightly smaller for even n than for
odd n.) Keystones facilitate Circle Tilings, since-unlike twins-they can always be
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placed in any legal hole in the tiling. The relative paucity of keystones in sets of high
order contibutes to the difficulty of Tiling the Circle. For n > 10 or so, skillful use of the
keystones is crucial. It is desirable to hoard keystones as long as possible, and then use
them to fill the holes remaining in the tiling (cf Tiling Tip no. 3 on p. 26).

There is no theoretical upper limit to the order of a ROMBIX set, but because the so-
lution time for Circle Tilings appears to increase exponentially with n, there is obvious-
ly a practical upper limit. The precise value of this limit is of course not well defined.

A purely physical constraint which places an upper limit on the order of ROMBIX
sets that can be effectively made and handled is the size and shape of the smallest
rhomb in SRI2". This limit is also not well defined, since it depends to some degree on
both the thickness and the lengths of the sides of the rombiks, as well as on the material
of which they are made.

In [Berlekamp, Conway, and Guy 1982 p. 790], Richard Guy discusses briefly some
aspects of the complexity of a puzzle or search of "size" n, when the number of solu-
tions varies as en. It would be of considerable interest to know the total number T(n) of
ROMBIX Circle Tilings (not counting two tilings that are related by rotation or reflec-
tion as distinct) for more than the first few values of n. All that is presently known is
that for n=2, 3, 4, and 5, T(n) = 1, 1, 3, and 15, respectively, and T(6)>>60. If we define
R(n) as the total number of Circle Tilings by the rhombs of SRI2w then for n=Z, 3, 4, and
5, we find that R(n) = 1, 1, 1, and 6, respectively, and R(6»60.
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4.8 Chipped Ovals and the tilings in which they are embedded.

A Chipped Oval is a Strictly Convex Oval from
whose boundary a simply-connected set of rhombs has
been removed, leaving a concave indentation.

The flower tiling pattern grid shown at the right
can be tiled by rombiks of ROMBIX-16. It was generat-
ed by first arranging sixteen congruent specimens of a
Chipped Oval in a circular ring to form petals. Next
the region in the interior of the ring was tiled from the
outside in. Many variations on this theme are possible,
since there exists a considerable variety of shapes of
Chipped Ovals for ROMBIX-16. Either four, eight, or
sixteen congruent specimens of such a Chipped Oval
can be joined to form a ring of petals. If two different shapes of these Chipped Ovals are
joined in an alternating pattern, a ring of thirty-two petals can be formed.

For some rings of petals, it is impossible to complete the flower tiling all the way to
the center of the pattern. This situation is reminiscent of the 'essential holes' in Penrose
patterns that were studied by J. H. Conway and described by Martin Gardner in his Sci-
entific American article on Penrose patterns [Gardner 1977].

4.9 Tiling the two-set RACETRACK with segregated colors

Use two ROM-
BIX-16 sets to tile
the Racetrack (the
Stretched Oval at
the right) with as
few color clumps as
possible. (A color
clump is a simply-
connected region of
one color that con-
sists of either one
rombik, or else of
two or more rom-
biks, each of which
shares at least one
edge with another rombik.) The number of color clumps in the tiling illustrated above is
eighteen, but I've managed to do it with six. Perhaps it's possible to do better than six.

Can a two-set Racetrack for ROMBIX-16 be stretched horizontally into a three-set
Racetrack? Four-set? What is the largest value of n for which ROMBIX-2n sets can form
Racetracks of unlimited length? Can you find an algorithm that defines a systematic til-
ing pattern for this largest value of n?
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4.10 Stars of order n tiled by two sets of ROMBIX-2n

n =2 n =3 n =4 n =5 n =6

n=7 n=8 n=9

ROMBIX Stars
2~rr-:;10

n=10

Examples of ROMBIX two-set tilings of Stars for all values of n~10are shown above.
What is the smallest value of n for which it is impossible to tile the Star of order n? Can
you construct an impossibility proof? Is it possible to use 2m2 sets (m>l) of rombiks to
tile large Stars? Is it possible to use ROMBIX sets to tile Concentric Rings of Stars? For
which values of n can Stars be tiled in patterns with c2 symmetry? d2 symmetry?
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4.11 The tiling of Stars by the rhombs in two sets of SRI2n

THEOREM 4.11.1
Every n-star can be tiled by the rhombs in two sets of SRI2n.

Skecth of proof:

1. Construct a star-like central ring (tier 1) of 2n congruent rhombs, each with smaller
face angle nl n (index=I), and each with a comer at the origin. If n=2 or n=3, go to
step 4.

2. Construct a second ring (tier 2) of 2n congruent rhombs by inserting a rhomb with
smaller face angle 2nln (index=2) in each of the 2n notches of tier 1. If n=4 or n=5,
go to step 4.

3. Construct consecutive rings k=3, 4, ..., [n 12] of 2n congruent rhombs each by insert-
ing a rhomb with smaller face angle kn! n in each of the 2n notches of the previous
tier.

4. If n is odd, the Star is complete. It contains 2n rhombs each for indices
1,2, ..., (n-1)12.

If n is even, the Star requires the removal of alternate rhombs (squares) from tier
n12. The completed Star contains 2n rhombs each for indices

1,2, ..., nI2-1,
and n rhombs of species n 12.
For both odd and even n, the Star comprises two sets of SRI 211"

4.U The shape of the outline of a Star

We have already seen that ROMBIX Stars have somewhat different shapes for odd
and even 11. The symbol for a regular star polygon is {Plq}; P is the number of edges and
q is the density (or winding number) [Coxeter 1964]. The density is a measure of the sep-
aration between the two vertices of the regular convex polygon {p} (= {plql. ) which

'lq=l
are incident on an edge of the star polygon.

DEFINITION 4.12.1

ODD n

For odd n~3, a ROMBIX star (or n-star) is the interior of the regular star polygon

(~J. Each rhomb incident at one of the 2n vertices of the star polygon is

called a star-tip; it has smaller face angle 6n= (n-1) nl2n. If the star is inscribed in

the unit circle, the edge length e of the star-tip is e = sinr·/2n)H·
sin! 3n·1

C 4n
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EVEN n

For all even n~2, a ROMBIX star (or n-star) is derived from the region in the interi-

or of the regular star polygon {;/~:: by the removal of n alternate star-tips. A star-
tip is the square rhomb that is incident at each of the 2n vertices of the star
polygon. If the star is inscribed in the unit circle, the edge length e of the star-tip
. sin (tr/2n)
IS e = '( )] .

sin l3~~2rr

4.13 Embedded hexagons--an open problem

Make a chaotic Circle Tiling with the rombiks of ROMBIX-16. Count the number of
embedded hexagons ('3-Ovals'). I conjecture that there are at least six 3-Ovals embed-
ded in your tiling.

Can you prove (or disprove) the following general conjecture?

CONJECTURE 4.13.1
For n~2 , there are at least n-2 embedded 3-0vals in every Circle Tiling by rhombs.

4.14 French's Fences (or 'the Farm problem')

Martin Gardner [Gardner 1986] describes
four area maximizing problems for pentomi-
noes, including one that was originally pro-
posed by R. J. French [French 1939]. Victor G.
Feser [Gardner 1986] independently resurrect-
ed this problem and added three related ones.
French's problem is to construct a Farm of the
largest possible area, subject to the condition
that the fence be one unit wide.

I have translated French's original version
of the Farm problem into the domain of ROM-
BIX as follows:

The Fence Problem for ROMBIX:
For the ROMBIX-2n set, find the arrangement of pieces enclosing the largest pos-
sible area that can be tiled by rhombs from SRI2n' The width of the fence must be
nowhere less than the width of the thinnest keystone.

(What is the smallest value of n for which the area of the largest region that can be
enclosed in a ROMBIX French's Fence is greater than or equal to the area of the corre-
sponding regular 2n-gon?)
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4.15 The two families of quasi-uniform tHings

On pp. 35-38 are shown examples of periodic tHings I call quasi-uniiorm, A quasi-
uniform tiling is defined by two properties: (a) it is topologically equivalent to a uni-
form tiling [Griinbaum and Shephard 1987], and (b) all of its tiles are g-Ovals for n=8
(cf. §3.1), including at least one non-regular g-Oval. The tilings on pp. 35-36 are topolog-
ically equivalent to (4.82); those on pp. 37-38 are topologically equivalent to (4.6.12).
The only possible tiles in a quasi-uniform tiling are 6-0vals, 4-Ovals, 3-Ovals, and 2-
Ovals. The number of aperiodic quasi-uniform tilings in each of the two allowed families
is infinite (as the reader can easily prove after examining the shapes of the outlines of
the vertical columns of Ovals in certain of the illustrated tilings).

Ihave made a preliminary study of 'Turtle Glass', a hypothetical aperiodic pattern
that is topologically equivalent to (4.6. 12) but cannot be dissected into columns each
of which has one-dimensional translation symmetry. There are altogether 1321 different
configurations consisting of a 6-Oval whose twelve edges are incident on six 3-0vals
and six 2-Ovals in an alternating sequence, if:

(a) each of the four shapes of 6-Oval for SRI16 is allowed, and
(b) the shapes of the 2-0vals are limited to the nos. 3 and 4 rhombs (the 67.50

rhomb and the square), respectively.

Ihave constructed a Turtle Glass pattern fragment (cf. p. 39) that contains a total of
seventy-two 6-0vals, including specimens of all four of the 6-Oval shapes. Twenty-
three of the 1321 different configurations (Turtles') of 6-Ovals and 2-Ovals appear in
this pattern fragment, but Ihave no proof that the pattern can be extended indefinitely.

00
1.000 -0.993 -0.840

o
-0.974

Shown above are the four shapes of 6-Ovals from SRIl6r together with their relative
areas. Below each 6-Oval is shown a sample Turtle with the Oval as core.
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A small portion of a Turtle Glass pattern is shown below. Even if it were possible to
prove that infinite chaotic Turtle Glass tilings exist, it is difficult to imagine that one
could also prove that such a pattern can incorporate every one of the 1321 different Tur-
tles. (For a discussion of a distantly related problem, cf. 'The Decidability of the Tiling
Problem' [Griinbaum and Shephard 1987].)

4.16 Congruent Islands (ROMBIX-16)

1. Find a simply-connected region (islanc:f) 14 that can be tiled by each of four disjoint
sets of rombiks selected without regard to color from the ROMBIX-16 set.

2. Select three monochrome subsets of ROMBIX-16. Try to find an island 13 that can
be tiled by each of these three monochrome subsets of ROMBIX-16.

a. For which three of the four possible selections of three subsets does 13 exist?

b. For the set of three subsets for which 13 does not exist, find an island 13* that
can be tiled by each of three subsets, one of which is monochrome, the other
two each containing three rombiks of one color and one twin rombik of a
second color.

c. Can you prove that no island can be tiled by all four subsets?

3. Partition the ROMBIX-16 set into two disjoint sets-A and B-of eight rombiks
each. A and B are each comprised of two monochrome subsets. Discover the
shape of an island 12 that is not a Stretched Oval that can be tiled both by A and
also by B.
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4. Repeat task number 3 (immediately above), pairing the monochrome subsets in
either of the other two possible ways.

4.17 Symmetrical islands (ROMBIX-16)

For each graceful subset, find an island that is not a ladder and has
(a) d1 symmetry or (b) c2 symmetry.

For each graceful subset, how many solutions are there of each symmetry type?

4.18 Congruent Atolls (ROMBIX-16)

Let us define an atoll as an annulus tiled by rombiks whose rhombic inventory is
equal to that of two ROMBIX-16 monochrome subsets. We require that every point on
the internal boundary of the atoll (i.e., the boundary of the hole) be no closer to the exter-
nal boundary of the atoll than the width of the smallest keystone. This width is defined
as the orthogonal distance between opposite sides of the keystone.

1. Partition the rombiks of ROMBIX-16 into two sets, each of which comprises two
monochrome subsets.

2. Find an atoll which can be tiled by each of these two sets. Make the total bound-
ary length as small as possible.

4.19 LOOSE ENDS (ROMBIX-16)

The rules of this two-person game are summarized in the instructions in the ROM-
BIX-16 package. An experienced player will almost certainly place some of his rombiks
in positions that create holes bordered either by rombiks or by both rombiks and one or
more edges of the tray. If a hole accommodates one or more of a player's remaining
rombiks but none of his opponent's, it is called a haven.

LOOSE ENDS is usually a short game, requiring at most only a few minutes of play.
The game is too complex for complete analysis, but in any event it is desirable that the
players take turns going first, in order to reduce any possible advantage to the second
player. With practice, players learn that certain twin rombiks are somewhat more likely
than others to fit into the arena near the end of the game. While it is important not to
squander keystones early in the game, it is sometimes useful for a player to create a
haven by placing a keystone in a hole even on an early move.

LOOSE ENDS is derived from a two-person game that was originally described by
Golomb [Golomb 1965] [Golomb 1994 pp. 8-9]. In Golomb's version, one set of pentomi-
noes is sufficient to make the game fascinating, but the ROMBIX-16 version is found to
be thoroughly unsatisfactory if only one set of sixteen rombiks is used.
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