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Some combinatorial properties of heterosets of even order 11

Abstract

We consider some combinatorial properties of heterosets of order 11, which are defined
as follows:

Let 11be any even positive integer, and let i, j, and k be integers £ [1, 11-1]
such that

The heteroset i of order 11 is comprised of

the single monomino i and

the n/2 -1 dominoes jk for which j + k _ 2i mod (n-l).

We analyze

the cyclic structure of special sequences composed of the 11/2 elements of a het-
eroset,

and
the matching behavior of two heterosets of order 11. Two heterosets i and j of
order n are defined as matching iff the n/2 elements of heteroset i can be ar-
ranged so that the n-l indices in the heteroset form a sequence identical to
some sequence formed from the n /2 elements of heteroset j.
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Some combinatorial properties of heterosets of even order n

Let n be any even positive integer.

Definitions:

1.1 A monomino i is a 1 x 1 square on whose top face is inscribed an integer index i from
the set {I, 2, ..., n-l}. The bottom face of the monomino is left blank.

1.2 Adamina jk is a 1 x 2 rectangle (j, k £ {I, 2, ..., n-l}; I*k). On the top face of one of its
two unit squares, the index j is inscribed. On the top face of the other unit square,
the index k is inscribed. The bottom faces of both unit squares are left blank.

1.3 Let P mod*q = p mod q + p B(p,q), where B(p,q) is the Kronecker delta.

Heteroset i of order n (i = 1,2, ..., n-l) is comprised of the single monomino i and the
following n/2-1 dominoes (cl the equivalent definition of heteroset i in the Ab-
stract):

i+l mod* (n-l) i+n-Z mod* (n-l)
i+2 mod* (n-l) i+n-3 mod* (n-l)

i+n /2-2 mod* (n-l) i+n/2+1 mod* (11-1)
i+n/2-1 mod* (n-l) i+n/2 mod" (n-1)

The seven heterosets for n=8 contain the following elements:

heteroset chord number 1 2 3 4 5 6 7

monominoes (0) 1 2 3 4 5 6 7

(1) 27 31 42 53 64 75 16
dominoes (2) 36 47 51 62 73 14 25

(3) 45 56 67 71 12 23 34

Table 1.1
Composition of the seven heterosets for n=8

It is convenient to use a single-heteroset circle diagram to represent each heteroset.
Place n-l marked points, numbered from 1 to n-l in counter-clockwise order, at uniform
angular intervals on the boundary of a circle. Point i represents the monomino of
heteroset i.The remaining n-2 marked points are connected in disjoint pairs by parallel
chords that represent dominoes. Each of the two marked points connected by a chord
corresponds to one of the indices of a domino. The chords are numbered in consecutive
order from 1 to n/2-1, starting from the chord that is closest to point i. The monomino is
defined as a degenerate chord and is called the zeroth chord. TIle chord numbers are
shown in parentheses in the first column of Table 1.1.
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Fig. 1.1 shows the seven circle diagrams for the heterosets for 11=8. In each diagram,
except for the monomino, the chords are labelled by chord number.

1 1 1 1

3 6 3 6 3 6 3 6

4 5 4 5 4 5 4 5

HETEROSET 1 HETEROSET 2 HETEROSET 3 HETEROSET 4

1 1 1

3 6 3 6 3 6

4 5 4 5 4 5

HETEROSET 5 HETEROSET 6 HETEROSET 7

Fig. 1.1
Circle diagrams for the seven heterosets for n=8

We define the problem of Matching Heterosets as follows:

Define each domino ij in every heteroset as an unordered pair that has two possible
ordered states: (ij) and (ft). Define the monomino i in the heteroset as ordered. Call any
sequence composed of the n/2 elements of the heteroset, in their ordered states, an
index sequence. If two heterosets can be ordered to form the same index sequence, they
are called matching. Otherwise they are called non-matching.

For a given value of n, which pairs of distinct heterosets are matching?

Let us define the cycle distance ~(j, k) between heterosets j and k as

~(j, k) = I k-j I
= n-l- Ik-j I

if Ik-j I< n/2, and
if Ik-j I~ n/2. (1.1)

The cycle distance between heterosets j and k corresponds to the shorter of the two cir-
cular arcs that join j and k in the circle diagram. Because the indices of the elements in
all of the heterosets are defined cyclically, whether or not two heterosets for given n are
matching or non-matching depends only on the cycle distance between them. Let us
call this property the Difference Rule.
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It is proved in Theorem A.l in the Appendix that a necessary condition for two het-
erosets to be matching is that their respective monominoes are located at opposite ends
of the index sequence. Consequently it is impossible for three heterosets to be matching.

We can make use of a ttoo-heteroset circle diagram to test for matching between two
heterosets j and k. In this diagram, the chord sets of the single-heteroset circle diagrams
for heterosets j and k are inscribed in the same circle. Heterosets j and k match iff there
exists a connected path between marked points j and k, consisting of a sequence of
chords selected alternately from the two heterosets, which includes every chord in each
heteroset.

For 11= 4, 6, and 8, every pair of heterosets is matching. Fig. 1.2 shows two-her-
eroset circle diagrams for n=8 for ~(1, k) = 1, 2, and 3.

1 1 1

3 ('1----,'---06 3G--+---\:--G)6 3 tIk-----~6

4 5 55 4 4

DELTA(1,2)=1 DELTA(l , 3) =2 DELTA(1,4)=3

Fig. 1.2
Two-heteroset circle diagrams for n=8

For 11=10,except for those heterosets for which ~(l,k) = 3, viz., 1:4, 2:5, 3:6, 4:7, 5:8,
6:9, 7:1, 8:2, and 9:3, every pair of heterosets is matching. Fig. 1.3 shows two-heteroset
circle diagrams for 11=10for ~(1, k) = 1,2,3, and 4.

1 1 1 1

3 (JJ-----7'''-----il) 8 3 {fH--t---t-~ 8 3 !:i--"r---T----4!J 8 3 CB.::-----~ 8

5 6 5 665 5 6

DELTA(1, 2) =1 DELTA(1,3)=2 DELTA(1,4)=3 DELTA(1 , 5) =4

Fig. 1.3
Two-heteroset circle diagrams for n=10
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For n=12 and n=14, every pair of heterosets is matching. For n=16, all pairs of
heterosets for which Ll = 1, 2, 4, and 7 are matching; those for which ~ = 3, 5, or 6 are
non-matching.

Definitions:

1.4 A heteroset i is called a core heteroset if ~nI2.

1.5 The indices i and n-i are called conjugate indices.

1.6 Two heterosets i and n-i are called conjugate heterosets.

1.7 The monomino i=n /2 is called self-conjugate.

1.8 The domino i n-i is called self-conjugate.

1.9 A heteroset i is called balanced if it forms a matching pair with its conjugate het-
eroset n-i, the respective monominoes i and n-i lying at opposite ends of the
matching pair. Otherwise, it is called unbalanced.

Example: For n=8, core heterosets 1, 2, and 3 are balanced. The following arrangements
define a matching pair for each of these heterosets and its conjugate:

heterosets 1 and 7
(1) (6 3) (4 5) (2 7)
(1 6) (3 4) (5 2) (7)

heterosets 2 and 6
(2) (3 1) (4 7) (5 6)
(2 3) (1 4) (7 5) (6)

heterosets 3 and 5
(3) (7 6) (4 2) (1 5)
(3 7) (6 4) (2 1) (5)

For n=10,heterosets 1,3, and 4 are balanced, but heteroset 2 is unbalanced.

For every even n, heteroset nl2 is unbalanced. It is impossible to satisfy the require-
ment that the monomino nl2 and its conjugate-also equal to nl2-lie at opposite ends
of the two index sequences that form a matching pair, because the index nl2 of the
monomino occurs only once in heteroset n12.

Theorem 1.1: If heterosets i and n 12 form a matching pair, then heteroset i is balanced.

Proof: Since heteroset i and heteroset nl2 form a matching pair, their elements can be
arranged to form the following sequences:

heteroset index sequence

i
nl2

(1) (2) (3)
(n12 n-a)(a n-b)(b n-c)(c
(nI2)(n-a a) (n-b b) (n-c c)

(4) (5) (6) ... (nI2-1) (nI2)
n-d) (d n-e) (e ...) ... ( n-i) (1)
(n-d d) (n-e e) (... ) (n-i 1)

Now rearrange the elements of heteroset i as follows:

a. Reverse the order of the indices in each domino that is in an even element posi-
tion (2), (4), .... Call such dominoes 'transposed' dominoes.
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b. Translate each transposed domino to the left of the domino (n /2 n-a), which is in
element position (1). The first transposed domino=the one that was in element position
(2)-is moved into the position at the left of the domino (n/2 n-a). The second trans-
posed domino-the one that was in element position (4)-is moved into the position at
the left of the first transposed domino, etc.

The sequence produced by this rearrangement is shown below, demonstrating that
heterosets i and n-i are matching:

heteroset index sequence
(n/2-1)... (6) (4) (2) (1)

1 (n-i ... ) ( ... e) (n-d c) (n-b a) (n/2 n-a)
n-t (n-t) ( ) (e n-d) (c n-b) (a n/2) (n-a

(n/2odd)

(3) (5)... (n/2-2)(n/2)
(b n-c) (d n-e)... ( ...) (i)
b) (n-c d) (n-e ... ) ... ( ... z)

or

heteroset
(n/2)(n/2-2) (4)

t (i) (... ) ... (n-d c)
n-l (i ... ) (... n-d) (c

index sequence
(2) (1) (3)

(n-b a) (n/2 n-a) (n-c b)
n-b) (a n /2) (n-a n-c) (b

(n/2 even)

(5) (n/2-1)
(n-e d)... (... n-i)
n-e) (d ... ) ... (n-i)

Using the inverse transformation, we can easily prove the converse of Theorem 1.1:

Theorem 1.2:

If heteroset i is balanced, then heterosets i and n/2 form a matching pair.

Example: Consider heteroset 6 for n=16, which matches heteroset 8 and is therefore bal-
anced. The elements of heteroset 6 are

6, 7 5, 8 4, 9 3, 10 2, 11 I, 12 15, 13 14.

The elements of heteroset 10,which is conjugate to heteroset 6, are

10, 11 9, 12 8, 13 7, 14 6, 15 5, 1 4, 2 3.

The elements of heteroset 8 are

8, 9 7, 10 6, 11 5, 12 4, 13 3, 14 2, 15 1.

The arrangements which define heterosets 6 and 8 as matching are as follows (the eight
element position numbers are shown for heteroset 6):

heteroset index sequence
(4) (5)

(5 7) (9 3)
5) (7 9) (3

5

(6) (7) (8)
(13 14) (2 10) (6)
13) (14 2) (10 6)

(1)
6 (8 4)
8 (8)(4

(2)
(12 15)
12)(15

(3)
(1 11)
1) (11



TIle arrangements which define heterosets 6 and 10 as balanced are as follows:

heteroset
(8)

6 (6)
10 (6

index sequence
(2) (1)

(15 12) (8 4)
15) (12 8) (4

(3) (5) (7)
(1 11) (9 3) (2 10)
1) (11 9) (3 2) (10)

(6) (4)
(14 13) (7 5)
14) (13 7) (5

Definition:

1.10 A string is a sequential arrangement of the elements of a heteroset in which the
self-conjugate index n/2 is located at one end, and the two indices a and n-a of
every conjugate pair occur in index positions that are adjacent but are in distinct el-
ements of the heteroset:

(n /2 n-a) (a n-b)(b n-c) (c n-d) (d n-e) (e ...) ... (... n-i) (I)

In the proof of Theorem 1.1, it was shown that if j<n /2, heteroset j forms a string iff
heterosets j and n /2 are matching.

Heteroset n /2 cannot form a string, since the two indices of every conjugate pair
occur together in single elements (dominoes) of the heteroset.

Theorem 1.3:

If heteroset i forms a string, the indices i and n /2 lie at opposite ends of the string.

Proof:

Let us denote by index position 1 the position at the end of the string that is occu-
pied by the index n /2.

Next consider the index i, which is contained in a monomino. If it were in an interi-
or index position, the indices in both of the index positions adjacent to it would be n-i.
This is impossible, since each index occurs only once in a heteroset. Hence the index i
occupies an end position in the string. Since the index position 1 is occupied by the
index n/2, the index i occupies index position n /2.

Definitions:

1.11 A heteroset is called unbroken if it forms a string.
Otherwise, it is called broken .

1.12 A stringlet is a sequential arrangement of all of the elements-including the
monomino i-of a proper subset of heteroset i,which contains the index n /2 in po-
sition 1. The index i is in position m, where m is equal to the total number of indi-
ces in the stringlet. Every pair of conjugate indices a and n-a occur in adjacent
index positions-but in distinct elements--of the heteroset (just as in a string).
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1.13 An index cycle is a cyclical arrangement of the p dominoes contained in a proper
subset of the n /2-1 dominoes of the i-th heteroset. Every pair of conjugate indices a
and n-a occur in adjacent index positions of neighboring elements of the heteroset.

Heterosets 1, 2, and 3 for n=8 are unbroken. The strings for these heterosets are as
follows:

heteroset 1
(4 5) (3 6) (2 7) (1)

heteroset 2
(4 7) (1 3) (5 6) (2)

heteroset 3
(4 2) (6 7) (1 5) (3)

For n= 10, heterosets 1, 3, and 4 are unbroken, but heteroset 2 is broken. If the index 5
is in index position 1, then the monomino 2 is forced into index position 3, thereby mak-
ing it impossible to complete an entire string sequence: (5 8)(2)

Theorem 1.4: A string contains no index cycles.

Proof: Let 5 be the string for the unbroken heteroset i. Assume that the index cycle C,
which is composed of the index pairs for p dominoes, is contained in 5. Now express C
as a linear strip of dominoes C', by cutting C along the boundary between the index
pairs for any two adjacent dominoes Dl and D2. Denote the conjugate indices in the end
positions of C' by a and n-a. It is impossible for C' to be contained in 5, because the two
conjugate indices a and n-a are not in adjacent index positions in 5. (In a string, the two
indices of every conjugate pair occur in adjacent positions.)

Theorem 1.5: Every domino in heteroset n /2 is an index cycle.

Proof: Every domino in heteroset n/2 is of the form i n-i, which is an index cycle.

Lemma 1.1: If-in the circle diagram for 11-the chords if and 11-j11-i(i, j ~ 11-1)are par-
allel, then either =i or i=n-i . Hence the four points i, i. 11-i, 11-jare not all
distinct.

Proof: The circle diagram for n contains the marked points 1, 2, ..., n-1. Consider
marked points a and b on the diagram. Let L1(a,b) be the cycle distance between a and b.

If Ib-a I < n/2, L1= Ib-a I;
if I b-a I ~ n/2, L1 = 11-1- Ib-a I (mod n-1).

i

If the chords i j and n-j n-i are parallel, then
L1(n-i, 1) =L1(n-j, j).

We will prove that for the four possible cases

(a) 11-2j < n/2; 2i-n < n/2,
(b) n-2j z n/2; 2i-n ~ n/2,
(c) n-2j < n/2; 2i-n ~ n /2,
(d) n-2j ~ n/2; 2i-n < n/2,

the assumption that L1(n-i, 1) = L1(n-j, J) implies that the
four points i, j, n-i, n-j are not all distinct.

j

n-j
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(a) n-2j < n/2; 2i-n < n/2

lL1(n-i, i) = L1(n-j, j)] => Zi-n = n-2j, or
i = n-j.

(b) n-2j ~ n/2; 2i-n > n /2

lA(n-i, i) = L1(n-j,j)] => n-Zi mod (n-1) = 2j-n mod (n-1)

2(i+j-n) == 0 mod (n-1)
Since n-I is odd,

i+j-n == 0 mod (n-1)

i+j == 0 mod n
S· 1<··< 1mce _l,J_n- ,

i+j = n, or
i = n-j.

(c) n-2i < n /2; 2i-n> n/2,

[A(n-i, i) = L1(n-j,j)] => n-2j = n-2i mod (n-1)

2(i-j) == 0 mod (n-1)
Since n-1 is odd,

i-j == 0 mod (n-1)
Since 1~i,j~n-1,

1= J.

(d) n-2j ~ n/2; 2i-n < n/2

[L1(n-i, i) = A(n-j, j)] => 2j-n mod (n-1) = 2 i-n
2(i-j) == 0 mod (n-1)

Hence (cf. proof for (c) above) i = j.

Theorem 1.6:

For any broken heteroset i=n /2, every index cycle contains at least three dominoes.

Proof:

In order for one domino to define an index cycle, it would have to be of the self-con-
jugate type i n-i, which occurs only in the broken heteroset n/2.

Assume that two dominoes are sufficient to define an index cycle. Such a cycle can
be represented as (i j) (n-j n-i), where no two of the integers i, j, n-i, and n-j are equal.
Consider the representation of the dominoes (i j) and (n-j n-i) as chords in the circle
diagram for n. Because the two chords belong to the same heteroset, they are paral-
lel. But Lemma 1.1 proves that it is impossible for them to be parallel if all four end
points are distinct. Hence the number of dominoes in an index cycle is at least three.
We prove in Theorem 1.9 that the number of dominoes in every index cycle is odd.
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Example: For n=10, broken heteroset 2 is comprised of the stringlet (58)(2) and its
heteroset complement, the index cycle (31)(94)(67).

Theorem 1.7:

The elements of every broken heteroset can be arranged to form one stringlet and
one or more index cycles.

Proof:

The result follows immediately from the fact that the monomino n/2 is a stringlet
and each of the n/2-1 dominoes is an index cycle.

Begin the iteration of domino placement just as if the heteroset were unbroken. Fol-
lowing the convention described in the proof of Theorem 1.3,place the domino that
contains the index n/2 at the left, with the index n/2 in index position 1, and then
add subsequent dominoes at the right, with conjugate indices in adjacent index posi-
tions but in distinct dominoes.

The iteration of domino placements is halted, before all the dominoes can be placed,
by the forced placement of the monomino i, thereby creating a string let. (If it were
not halted, the process would lead to the formation of a string, not a stringlet.)

Let P be the set of elements, including the monomino, that are contained in the sin-
glet, and let U be the complementary set of dominoes. It is impossible for U to con-
sist of only one domino, because that would imply that each of the two indices in P
that are conjugate, respectively, to one of the two indices of that single domino oc-
curs exactly once in P, contrary to the requirement that every index in P, aside from
n/2, be paired with its conjugate. Hence there are at least two dominoes in U. But
the set of indices in U consists of conjugate pairs, and no two of them occur in the
same domino. Hence they can be arranged to form one or more index cycles. From
Theorem 1.6 we conclude that the smallest of these index cycles contains at least
three dominoes.

We conclude from the above arguments that the number 115of indices in a stringlet
satisfies the inequality 1~ns<n-6. For the broken heteroset 11/2, ns=l, since for every
even n, the monomino n/2 is a stringlet.

The distribution of broken strings, stringlet size, and the number and sizes of index
cycles are described by Theorem 1.8.We denote the greatest common divisor of a and b
by (a,b), and we define a proper divisor of the integer m to be any divisor of m-including
m itself--except for 1.We denote both stringlet and string by the collective name chain.
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Theorem 1.8

Let
5 = the heteroset number for a heteroset of (even) order n.
'1J(n)= {q1, q21 ..., qz} = the set of proper divisors of n-l.

~(st, 5V = the cycle distance between heterosets 51 and Sz.

~ * =~(5, n/2) = the cycle distance between heterosets 5 and n/2.

Then

(a) Heteroset 5 = n/2 is broken.

(b) Heteroset 5'* n /2 is broken iff there exists a qi [0 '1J(n)such that

otherwise, heteroset 5 is unbroken.

Let
q*=(~*, n-1),
ns = the number of indices in the chain for heteroset 5.

Ve = the number of index cycles in heteroset 5, and
ne = the number of indices in each index cycle in heteroset 5.

Then
11S= (11-1)/ q*,
ve = (q*-1)/2,
ne = 211s

For two heterosets 51, Sz(51 '* Sz), let
5 = n/2 - ~(51' 5V.

Then heterosets st and Sz are matching iff heteroset 5 is unbroken.

(1.2)

(1.3)
(1.4)

(1.5)

For the brokenheteroset 5 =n/2, ~(5, n/2) = 0, and q*= n-L

From Eqs. 1.2 -1.4, for 5=n/2,

ns = 1
ve =n/2-1
ne= 2

10
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Example 1: Let n=46. ~46)= {3,5,9, 15, 45}.Of the 23 heterosets I, 2, ...,23, the follow-
ing eleven are broken:

2, 3, 5, 8, 11, 13, 14, 17, 18, 20, 23.
For these heterosets,the values of Ll* = Ll(s, n/2) are

21, 20, 18, 15, 12, 10, 9, 6, 5, 3, O.

respectively.

q* Ll* = Ll(s, 23)

3
5
9
15
45

3 6 12 21
5 10 20
9 18
15
o

1
2
4
7
22

30
18
10
6
2

15
9
5
3
1

Example 2: Let n=64. ~64)= {3,7, 9, 21, 63}.Of the 32 heterosets 1,2, ...,32, the follow-
ing fourteen are broken:

2, 4, 5, 8, 11, 14, 17, 18, 20, 23, 25, 26, 29, 32.
For these heterosets, Ll* = Ll(s, n/2) =

30, 28, 27, 24, 21, 18, 15, 14, 12, 9, 7, 6, 3, 0,

respectively.

q* Ll*= Ll(s, 32) Vc nc ns

3 3 6 12 15 24 30 1 42 21
7 7 14 28 3 18 9
9 9 18 27 4 14 7
21 21 10 6 3
63 0 31 2 1
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Sketch of proof that ns = (n-l)/q* for heteroset s<n/2 (Eq. 1.2)

Consider the two-heteroset circle diagram CD(s, n/2) for heterosets sand n/2. We
can assume without loss of generality that s<n /2, i.e., that heteroset 5 is a core heteroset.
The cycle distance ~(s, n/2) between heterosets s and n/2 is then

~ * = 11/2 - s. (1.9)
Let

8= M* (1.10)
and

q*= (~*, n-l). (1.11)

Let P be a connected path along the disjoint chords

P(l) P(2), P(2) P(3), ..., P(k) Ptk» 1), ... ,
where P(l) = 5, and subsequent vertices in Pare defined as follows:

Icounter-clockwise' vertex set Iclockwise' vertex set

P(2) = (s + 8) (mod (11-1» P(3) = (s - 8) (mod (11-1»
P(4) = (s + 28) (mod (11-1» P(5) = (5 - 28) (mod (11-1»

P(2k) = (s +k8) (mod (n-I) P(2k+l) = (5 - k8) (mod (11-1» (1.12)

P(2m) = (5 + m8) (mod (11-1» P(2m+l) = (5 - m8) (mod (11-1»
P(2(m+1» = (5 + (m+1)8) (mod (11-1» P(2m+3) = (5 - (m+ 1) 8) (mod (11-1»

P(2(2m» = (s + (2m)8) (mod (n-1» P(2(2m+l» = (s - (2m)8) (mod (11-1»

Every chord P(2k) P(2k+ 1) = «s + k8) (s - k8» (mod (n-l» (k = 1,2, ... ) defines an ele-
ment in heteroset s, since the endpoints of each such chord are located at two marked
points on the circle that are on opposite sides of the marked point s and whose cycle
distances from 5 are both equal to 28.

Every chord P(2k+1) P(2(k+1» = «s - k8) «5 + (k+l)8» (mod (n-l» (k = 0, I, 2, ...) de-
fines an element in heteroset n /2, since the endpoints of each such chord are located at
two marked points on the circle, on opposite sides of the marked point n /2, whose
cycle distances from n/2 are both equal to (k + 1/2)8. (More simply, we can prove that
every such chord defines an element in heteroset n/2 by proving that the indices of the
endpoints of the chord are conjugate:

(5 - k8) + (s + (k+1) 8» = 2s + 8
= Zs+ 2(n/2 - 5)
= n.) (1.13)
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The construction of P halts when the vertex P(2m+1) in the clockwise sequence of
vertices is found to coincide with the vertex P(2m+2) in the counter-clockwise sequence
of vertices. TIle vertex P(2m+1) is the terminal vertex of the (2m+1)-th chord in P. The
coincidence of vertices P(2m+1) and P(2m+2) implies that

5- m8 == 5 + (m+1)8 (mod (n-1», (1.14)
or

(2m + 1)8 == 0 (mod (11-1». (1.15)

Since n-1 is odd, Congruence 1.15 implies that

(2m + 1)~* == 0 (mod (n-Ij), (1.16)

The number of vertices in P is equal to 2m + 1. Let us substitute n, for 2m + 1 in Con-
gruence 1.16:

ns ~* == 0 (mod (n-1». (1.17)

We now invoke an elementary theorem concerning solutions of linear congruences (ef
Topics from the Theory of Numbers. Emil Grosswald, p. 47):

Theorem 1.9

If (a, m) = d, then the congruence
ax == b(mod m)

has no solution if d~b and has a unique solution mod m/ d if d Ib.

Theorem 1.9 implies that Congruence 1.17 has a unique solution mod n:1, since
q

(~*, n-1) = q", and q* Io. If we substitute

n-1n --"-
S - q* (1.18)

in Congruence 1.17,we have

(n-1)1(~* n:1)q (1.19)

Since q*I~*, we conclude from Theorem 1.9 that 11s = (n-1)/q* is a unique solution
mod (n-1)/ q* of Congruence 1.17.

If n-1 is prime, q* = 1 for every heteroset s. The construction of the path P does not
halt until all of the n-2 chords have been traversed. P is therefore a string, and

ns= n-1. (1.20)
13



If n-l is composite, then for every heteroset 5 for which q* = 1, ns = n-l, and P is a
string. For every heteroset 5 for which q*>l, Eq. 1.18 implies that ns<I1-1. The construc-
tion of the path P halts at the ns-th vertex and thereby produces a stringlet.

We will now prove that for every 5<n/2, the path Pends on the marked point n/2
in CD(5, n /2), i.e., that if we substitute ns for (2111+1)in the equation

P(2m+ 1) = (5 - 1118)(mod (n-1», (1.12)
we obtain

(1.21)

To prove Eq. 1.21, it is sufficient to prove that

2P(ns) = n
== 1 (mod (n-Ij).

(1.22)
(1.23)

Substituting
n-1ns = -*-,q (1.18)

(1.24)
and

5=n/2-/).*

= (n-8)/2 (1.25)

in the left hand side of Eq. 1.22,we obtain

(25 -2mb) (mod (n-l) = n - 8 - (n~: - 1)8 (mod (n-I»

(n-l) 0= n - * (mod (n-l».
q

(1.26)

But o" I s. Therefore

2P(ns) = 2(5 - 1118)(mod (n-l»

== 1 (mod (n-Ij).
(1.22')

Hence
pens) = n/2. (1.21)

Next, in Theorem 1.10, we prove that the clockwise and counter-clockwise vertex
sets defined by Eqs. 1.12 define the ns vertices-in opposite order-of the regular star

polygon ( n5 \" which has »,edges and 'density' (winding number) = 211**.
(2L1*/q) q

14



Theorem 1.10:
11 -1

Consider the ccw sequence H = [h(l), h(2), ..., h(2m+2)], where m =-~~-f
h(l) = P(l), and

h(k) = P(2k-2) (2sk~m+2). (1.27)

Let
&1(i) = h(i+ 1) - h(l) (i = 1,2, ..., Zm+1), and

8=n-2s.

Then ~h(l) = 8 (i = I, 2, ..., 2m+ 1). (1.28)

Proof:

According to Eqs. 1.12, the value of each term h(i) in H is as follows:

1 2 3 k k+l 2m+l 2m+2

P(l) P(2) P(4) P(2k-2) P(2k)
s s+S s+28 s+(k-1) 8 s+k8

P(2(2m» P(2(2m+1»
s+2m8 s+(2m+1)8

Then
~h(l) = h(i+1) - h(i)

=P(2l) - P(l)
= 8. (lsiS2m+1) (1.29)

From Eq. 1.10 and Congruence 1.17, it follows that

P(2(2m+1» = P(l).

Consecutive points of H are therefore the vertices of a regular star polygon that is traced
in counter-clockwise order. The angular distance between consecutive points of His
equal to 2n(8 l(n-1». The density d (winding number) of the star polygon is therefore

= n} (2A*)/(n-l)q

= 21*
q*

(1.31)

15
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It is obvious from inspection of Eqs. 1.12 that a similar argument is sufficient to prove

that the vertices of the same regular star polygon f\ - n s \, are traced in clockwise
(2t1*/ q*)

order by the clockwise sequence of vertices defined by Eqs. 1.12. We see from Eqs. 1.12
that the coincidence of the vertices defined by these two sequences is equivalent to the
statement that

s+ko=:s-(n-1-k)0 (mod (n-1», (1.32)

which in turn is equivalent to the trivial congruence

(n-1)0 =: 0 (mod (n-Ij), (1.33)

Next we prove that for broken heteroset s,

(1.6)

Proof: Let s be a broken heteroset, and let CD(5, n/2) be the two-heteroset circle dia-
gram for heterosets sand n/2.

Let N(5) = the number of vertices in CD(5, n/2) which are contained in the shorter
interval between the two vertices of every closest pair of vertices in the stringlet for het-
eroset s.

Because the ns vertices of the stringlet correspond to the vertices of the regular star
, 11s \

polygon \~-~~-;-q*)I (cf Theorem 1.10),

N(s) = 0/2-1
=,1*-1. (1.34)

Now consider the sequence Hs that is comprised of the ns = 2m+1 consecutive verti-
ces of the stringlet for heteroset s (cf Eqs. 1.12 and Congruence 1.34):

s
(s+O)
(5 -0)
(5+20)
(5 -20)

(mod (n-l»
(mod (n-l»
(mod (n-I)
(mod (n-1»

(s+mo)
(5 -mo)

(mod (n-l»
(mod (n-1». (1.35)

16



Let a = an integer such that l~aSN(s)/2.
Consider the following directed chord sequence Des *, which is derived from Hs:

(s - a) (mod (n-I) ( s +a) (mod (n-l»,
(s +a) (mod (n-L) «s + 0) - a) (mod (n-l»,

«s + 0) - a) (mod (n-I) «s - 8) +a) (mod (n-l»,
«s - 8) +a) (mod (n-l» «5 + 20) - a) (mod (n-l»,

«s + 20) - a) (mod (n-l» «5 - 20) +a) (mod (n-l»,
«5 - 28) +a) (mod (n-l» «5 + 38) - a) (mod (n-l»,

... ,

«5 +(111-1)0)- a) (mod (n-l» «5 - (111-1)8)+a) (mod (n-l»,
«5 - (111-1)0)+a)(mod (n-l» «5 +1110) - a) (mod (n-l»,

«5+1110) -a) (mod (n-l» «5-1110) +a)(mod(n-l»,

«5 - 1110) +a) (mod (n-l» «5-1110) -a) (mod (n-l»,

«5 - 1118) - a) (mod (n-l» «5 + 1110) +a) (mod (n-l»,
«5 + 1110)+a) (mod (n-l» «s - (m-l) 0) - a) (mod (n-l»

«5-(111-1)8)- a) (mod (n-I) «5 + (111-1)8)+a)(mod (n-Ij),
«5 + (m-l)O)+a)(mod (n-l» «s-(m-2)0)- a) (mod (n-l»,

...,
«5 - 20) - a) (mod (n-l» «5 + 28) +a) (mod (n-Ij),

«5 + 20) +a) (mod (n-l» «5 - 8) - a) (mod (n-I)
«5 - 0) - a) (mod (n-l» «5 + 0) +a) (mod (n-Ij),

«5 + 0) +a) (mod (n-l», (5 - a) (mod (n-l». (1.36)

Every chord «5 + k8 - ex)(5 - k8 + a» (mod (n-l» (k = 0, 1,2, ..., 111)is a domino in het-
eroset 5, since the cycle distances between each of its distinct endpoints and the marked
point 5 are both equal to (k8 - a).

Every chord «5- k8 - a) (5 + k8+ a» (mod (n-l» (k = 111,111-1,...,2, 1) is a domino in
heteroset 5, since the cycle distances between each of its distinct endpoints and the
marked point 5 are both equal to (k8 + a).

Every chord «5- k8) + ex)«5 + (k+l)8) - a) (mod (n-l» (k = 0, 1,2, ...,111-1)is a domi-
no in heteroset n /2, since the indices of its endpoints are conjugate:

«5 - kO)+a) (mod (n-I) + «5 + (k+l)8)-a) == 25+8 (mod (n-l»
=n. (1.37)

Every chord «5 + k8) + a) «5- (k-l) 0) - a) (mod (n-l» (k = 111-1,...,2,1) is a domino
in heteroset n /2, since the indices of its endpoints are conjugate:

«5 + kO)+a) (mod (n-l) + «5 - (k-l)8)-a) == 2s+8 (mod (n-l»
=n, (1.38)

17
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The single remaining chord in Des *-the one between dashed lines in Eqs. 1.36-is
«5 - m8)+a) (mod (n-l)) «5 - mo) - a) (mod (n-l)).

This chord is a domino in heteroset n/2, since the indices of its endpoints are conjugate:
«5 - m8)+a) + «5 - mo) a) == (25 - 2m8) (mod (n-Ij). (1.39)

From Congruence 1.15,
2m8 == 8 (mod (n-l». (1.40)

Substituting Congruence 1.40 on the r.h.s. of Congruence 1.39, we obtain
«5 - m8)+a) + «5 - m8)-a) == (25 +8) (mod (n-1»

= n. (1.41)

We have proved that the chord sequence DCs * defines a closed path ('loop') com-
posed of an alternating sequence of chords that belong respectively to heterosets 5 and
n/2. Hence DCs* is an index cycle. Since it contains two chords for each single chord of
the stringiet from which it is derived,

(1.4)

The total number Vc of index cycles for heteroset 5is readily found as follows:

Let 5(5) = the set of chords in the stringlet for heteroset 5, and
let 5(ci) = the set of chords in the i-th index cycle (i = 1,2, ..., v c) for heteroset 5.

Since 5(5) n 5(C1) n 5(C2) ... n 5(vc)= 0,

ns + Vc (2ns) = n-1. (1.42)

From Eq. 1.2,

1ls = (n-1) / q".

Hence
Vc = (q*-1)/2.

(12)

(1.3)

Two-heteroset circle diagrams for the broken heteroset pairs 3,8 and 5,8 for n=16
are shown on p. 19.
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Two-heteroset circle diagrams for broken heteroset pairs 3,8 and 5,8, for n=16.

1
2 15

4

5

8 9

1
2 15

4

5

8 9

19

13

.1* = .1(5,n/2) = ~(3, 8) = 5
q" = (~*, 11-1) = 5
n5 = 3; v = 2; nc = 6; 8 = 2~ * = 10

12

Stringlet: (8 13) (3)
Loops:

(a) (24) (129) (714)
(b) (15) (1110)(615)

13\
CCW regular star polygon \2l

3, 13,8

13

.1*= .1(5,n/2) = ~(5, 8) = 3

q* = (~*, n-1) = 3

n5 = 5; v = 1; nc = 10; 8= 2.1*= 6

Stringlet: (8 2) (14 11) (5)
12 Loop:

(37) (9 1) (15 10) (64) (1213)

{
5\CCW regular star polygon 2r

5, 11,2,8, 14



Appendix

We prove here that if two heterosets are matching, their respective monominoes
are located at opposite ends of their common (matching) index sequence.

TheoremA.1

Let S, denote an index sequence formed from the n/2 elements of heteroset i and
Sj a matching index sequence formed from the n /2 elements of heteroset j.

Then the monominoes i and j lie at opposite ends of the index sequences Sj and
Sj, respectively.

Suppose, contrary to the assertion of the theorem, that the monomino i occupies
an index position in the interior of Sj. Let us denote by end segments the two segments
of Si-E1(1) and E2(i)-that are on opposite sides of i. Both E1(i) and E2(1) are com-
posed of dominoes only, since there is only one monomino in every heteroset. Hence
the number of index positions in both E1(1) and E2( 1) is even.

Now consider how the index position in Sj that corresponds to the index position
occupied by the monomino i in Sj is filled. It is not filled by the monomino j, since it=i.
Therefore it must be filled by the index i of a domino of heteroset j. Let us call that
domino r, and let k denote the other index of the domino 'l'. Let E1(j) denote the end
segment of Sj whose terminal indices are k and an index at one end of Sf The
monomino j must be contained in E1(j), since the total number of index positions in
E1(j) is even. Hence E2(j), like both E1(i) and E2(1), contains only dominoes. Let E2(1)
be the end segment of Si which corresponds to E2(;). It is impossible for E2(Z) and E2(;)
to contain the same indices in corresponding index positions, since every domino in
heteroset i is different from every domino in heteroset j. We conclude that the
monomino i occupies an index position not in the interior of Si, but at one end of the
index sequence s;

A similar argument applied to the index sequence Sj implies that the monomino j
lies at one end of Sj. Since it=i, it must occupy the index position at that end of Sj
which is opposite to the end of Si occupied by the monomino i.

Corollary A.I

It is impossible for three heterosets to match.

The proof follows directly from the fact that for the monominoes i, j, and k of any
three heterosets of the same order n, i*it=k.
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