SUM OF SINE IDENTITIES

The idea is: your algorithm does not produce all sum-of-sine identities but it seems to produce a spanning set for them.

The case n = 15.

The cyclotomic polynomial of order 30 is:

$$Q_{30} = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1.$$

So the minimal polynomial of $2\cos(\pi/15)$ is

$$\Psi(Q_{30}) = -1 - D_1 + D_3 + D_4 = x^4 + x^3 - 4x^2 - 4x + 1.$$

Call this m_{15} . To get sum-of-sine identities, involving at most $7\pi/15$, we want multiples of m_{15} of degree at most 6. So we consider $(ax^2 + bx + c)m_{15}$. Write this as a linear combination of Dickson polynomials of the second kind to get

$$aE_6 + (a+b)E_5 + (a+b+c)E_4 + cE_3 - (2a+b+c)E_2 - (3a+ab+ac)E_1 - (2a+2b+c)E_0$$
.

We take the obvious basis. When a = 1, b = 0, c = 0 we get

$$E_6 + E_5 + E_4 - 2E_2 - 3E_1 - 2E_0$$
.

Plugging in $2\cos(\pi/15)$ gives the identity:

$$\sin 7\theta + \sin 6\theta + \sin 5\theta - 2\sin 3\theta - 3\sin 2\theta - 2\sin \theta = 0,$$

where $\theta = \pi/15$. Recall that $E_k(2\cos\theta)\sin\theta = \sin(k+1)\theta$, so that the multiple of θ is one more than the index of E. I will abbreviate this to

$$B_1 = (7, 6, 5, -3, -3, -2, -2, -2, -1, -1).$$

When a = 0, b = 1, c = 0 we get $E_5 + E_4 - E_2 - 2E_1 - 2E_0$ and so the identity

$$B_2 = (6, 5, -3, -2, -2, -1, -1).$$

Lastly, a = 0, b = 0, c = 1 gives $E_4 + E_3 - E_2 - 2E_1 + E_0$ and the identity

$$B_3 = (5, 4, -3, -2, -2, -1).$$

As worked out in your notes, your algorithm gives three identities:

$$A_1 = (7, -5, -4, 2, 1)$$

$$A_2 = (7, -3, -2)$$

$$A_3 = (6, -4, -1).$$

These clearly do not account for all identities. But they are a basis:

$$A_1 = B_1 - B_2 - B_3$$
 $A_2 = B_1 - B_2$ $A_3 = B_2 - B_3$.

The case n = 18.

Here

$$Q_{36} = x^{12} - x^{6} + 1$$

$$m_{18} = \Psi(Q_{36}) = -1 + D_{6}$$

$$= x^{6} - 6x^{4} + 9x^{2} - 3.$$

We want multiples of m_{18} of degree at most 8. We take $(ax^2 + bx + c)m_{18}$ and write this as a linear combination of E's. We get

$$aE_8 + bE_7 + (a+c)E_6 - (a+c)E_4 - bE_3 - 2aE_2 - bE_1 - (a+c)E_0$$
.

The standard basis gives:

$$(a, b, c) = (1, 0, 0)$$
 $B_1 = (9, 7, -5, -3, -3, -1)$
= $(0, 1, 0)$ $B_2 = (8, -4, -2)$
= $(0, 0, 1)$ $B_3 = (7, -5, -1).$

Your algorithm gives

for
$$3 \times 6$$
 $A_1 = (7, -5, -1)$ $A_2 = (8, -4, -2)$ $A_3 = (9, -3, -3)$ for 9×2 $A_4 = (9, -7, -7, 5, 5, -3, -3, 1, 1)$.

The A's do not form a basis since $A_4 = A_3 - 2A_1$. But they contain a basis since

$$A_1 = B_3$$
 $A_2 = B_2$ $A_3 = B_1 - B_3$.

So again the A's span all the sum-of-sine identities.