These informal remarks on K-patterns were written as a kind of interim progress report in the
course of preparing a book on the subject, partly in order to share some of my principal results
with others and partly to discover for myself which questions appear to show promise for further
development. If the organization of the material on color reflection symmetry seems especially
diffuse, it is perhaps because it was written last during the few days it was being worked out
(and tested).

I have scarcely mentioned what was in retrospect the most difficult part to make come out
right--the calculation of period and symmetry for all <n, s> parameter sets, for power residues
with o < 7 (§1II. A, p. 8). But this summary was not intended to be exhaustive! In any case, I
will try to cover this topic adequately in the forthcoming book.

I welcome any comments, including improvements, extensions, and of course identification

of errors.

Alan Schoen



[LLUSTRATIONS

page n S io X sym
Cover 293 14 2 29 L

i 2001 43 ! 3 dg
i 25 5/7 1/7 3 dig
iii 3515 8 1 5 ds
iv 4123 6 1 7 d7
v-a 233 22 1 23 L
v-b 233 20 1 23 L
v-C 293 14 1 29 L
v-d 233 8 1 23 L
v-e 293 8 2 29 L
vi-a 313 S 1 31 L
vi-b 313 2 1 31 L
vii 373 1 1 37 do
viil 232 23/4 1/4 3 ds3
ix 132 13/4 1/2 3 dis3

The rounded character of most of the K-patterns shown here is the result of:
(a) dividing each calculated unit vector into two collinear half-unit vectors which are
calculated but not plotted; and

(b) constructing the pattern by joining the midpoints of all consecutive half-unit vectors.



ADDITIONAL TILLUSTRATIONS

figure n s jo o sym
X 5-19-37 = 3515 36 1 5 dg
xi " 12 1 5 dg
xii ¥ 24 ! 5 dg
xiii 373 = 50,653 2 0 37 L
xiv " 4 0 37 L
XV " 6 0 37 L
xvi b 108 0 37 L
xvii ¥ 110 0 37 L
xviii " 112 0 37 L
xix™® 5+11 = 55 1 - 54 1 3 various
xx™ 5:13 = 65 1 - 64 1 3 various
xxi* 517 = 85 1 - 50 1 3 various

* pattern with step value 1 is in first row, first column;

2 is in second row, first column;

pattern with step value

etc.



ADDITIONAL ILLUSTRATIONS (concl.)

figure n s io oL sym
xxii 313 = 39,791 8 0 31 ;2
xxiii n 10 0 o L
xxiv " 12 ’ " g
XXV " 14 - a "
xxvi . 16 il " %
xxvii n 100 M " i
xxviii " 102 i " .
xxix b 104 e " &
XXX " 108 A 4 "
xxxi T 106 " 1 "
xxxii " 110 ’ e "
xxxiii " 112 " i "
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I. Introduction

These remarks provide a brief summary of a study, not yet published, of a special class of
ornamental designs which I call K-patterns. These designs can be produced rapidly and with high
precision on a personal computer equipped with a graphics monitor. Throughout this note, K-
patterns will be defined as the infinite set of 2-dimensional designs constructed by joining the
points corresponding to consecutive partial sums of the set {rk}, where

k
rie =exp [i (jo + sj)d'n”/n]; (I.1)
j=0

k=0,1,2,... fundamental period (hereafter called simply period);
the parameters «, n, jo, S are positive integers.

K-patterns are unlimited in their variety. They include both strip designs (l-dimensional
lattice symmetry) and centrosymmetric designs (dihedral symmetry of every order and cyclic
symmetry of every order). Many of the patterns of low symmetry resemble cartoons of animals
or human beings. |

K-patterns* may be said to belong to finite differential geometry: each portion of a curve
is generated by moving a point through a finite distance in a specified direction. It is characteristic
of such locally defined curves that it may be difficult to determine their global properties (in
the case of K-patterns, their symmetry, period, and--if the curve is closed--star density [winding
number]).

The connections between K-patterns and LOGO-generated graphics are apparent. In fact,

a number of LOGO "spiral curves" which have appeared as illustrations in articles or books on LOGO

were already familiar to me as K-patterns corresponding to small integer values of the four parameters.

It may not be obvious why I have not chosen to simplify the definition of K-patterns by
setting jo =0 in Eq. I.1. Such a choice would simplify the analysis of both the symmetry and period

of K-patterns, but at the cost of reduced pattern variety. It would also complicate considerably

*] chose the name K-patterns because of the investigations by E. Kummer of number-
theoretic questions involving power residues, first mentioned to me by Andrew QOdlyzko.



the control of color reflection symmetry (discussed in §1V). Specifically, three reasons for
allowing non-zero values of j5 are as follows:
(i) For the K-patterns decribed in §III.A of this note, whenever (n, s) > 1, the number
of non-trivial examples is severely reduced if jo = 0 instead of jg = 1, for example.
(i) If « is odd, then no K-patterns with cyclic symmetry are possible, unless jo # O.
(iii)  If the symmetry is either lattice or dihedral, flexibility in the choice of jo makes

it a simple matter to generate K-patterns with perfect color reflection symmetry.

The way I have chosen to add color reflection symmetry to initially monochromatic K-patterns
may be described as follows: If the pattern has d| symmetry, then it remains monochromatic.
If it has di symmetry with k > 2, then adjacent replicas (sectors) of the’fundamen'tal region of
the pattern's rotation group (of order k) are colored differently, within the limitations of the
palette of available colors. If the pattern has lattice symmetry L (group generated by two parallel
reflections), then adjacent replicas (cells) of the fundamental region of the pattern's translation
group are colored differently. In any case, the color boundaries of each replica of the fundamental

region of the pattern coincide with lines of reflection of the corresponding monochromatic pattern.

For each of a number of infinite families of patterns, I have devised algorithms (p-s rules)
for calculating the period and symmetry of any K-pattern in the family from the parameter
values. These rules were developed both from empirical computer runs and by the application of
elementary number theory. The reason for developing such rules is a practical one: without
advance knowledge of both period and symmetry, it would be impossible to reduce the generation
of a properly centered, scaled, and colored plot to a fast automatic process suitable for a personal
computer.

In the case of centrosymmetric patterns, if both‘ the period and the order g of the symmetry
group are known before the positions of pattern points are computed, it then becomes possible

to reduce the time required for the pattern centering and scaling computations which must precede

-



plotting. For g>> 1, this saving can be appreciable: the required time is reduced by a factor which

approaches g.



II. Six theorems and two conjectures

A. Theorems

[ have proved a variety of theorems about K-patterns. Six of the ones with relatively easy

proofs are as follows:
Theorem 1. Every K-pattern is periodic in the summation index j, with period 2n. The
fundamental period may be less than 2n.

Theorem 2. Let & = any positive integer > 2. Factor n and s as follows:

r s
n=T Pi* ; (II. 1)
i=1
r 9
s=sg TT pi% ; (I1.2)
i=1
so=s/[n,s] (11.3)

Then the smallest integer m which satisfies
[s(k+m) 1% = (sk* (mod 2n) (IL.4)

for all integer values of k, n, and s is given by

m=T pit ; (I1.5)
i=1

where

M= max{ OU(¥-xd})} ; (I1.6)

and

€ = 2 if n and s are both odd; (11.7)

¢ = 1 otherwise.

Theorem 3. For any integer values of « and of n, the K-pattern for jo = 1, s = | has period 2n.
It is symmetrical under inversion in thecenter of the pattern. If n and « are both odd, the pattern
is a closed curve which is symmetrical by reflection in two perpendicular lines through its center.

Theorem &. If nis prime, s<n, and s' = 2n - s, then for any X and any jo, the K-patterns



for s and s' are related by reflection in the x-axis.
* Theorem 5. If n is prime, then for any & the K-patterns for jo = 0 and jo = | are identical,
except that
() for odd s, there is a phase shift h between the indexing schemes for the two patterns:

%2 g% G +h* (mod 2n); | (I1.8)

(L + sj)
h satisfies the linear congruence
sh = | (mod 2n); (11.9)
(ii) for even s, each pattern is rotated through a half-turn with respect to the other, and
in additioﬁ there i§ a phase shift A between the indexing schemes for the two patterns:
(1+sp¥= [s*(G+A)* +n] (mod 2n); (11.10)
A satisfies the linear congruence
sA = | (rﬁod n). (II.11)
Theorem 6. .Coﬁsider any K-pattern for« = 3 whose symmetry group includes one or more
reflection isometries.
Let m = period;
sym = order of symmetry group if symmetry is dihedral;
sym = | if symmetry is lattice (group generated by two parallel reflections).

Define the complexity of any K-pattern as

complexity = m/sym. ... _ _ o (I1.12)

3

Then perfect color reflection symmetry results if either ) e

(a) n and s are both even or both odd,

q 3s2 - {n+s- complexity)g = 0 (mod 2n), (I1.13)
an
jo =(n+s)/2; or

(b) ~  siseven,

3s3. complexity, =0 (mod 2n), (I1.14)

and
]0 = 5/2.



cyclic K-patterns based on cubic residues.

B. Conjectures

In the area of polynomial residues, I have formulated two conjectures which predict K-pattern
symmetry and period according to the parity (even or odd) of the sum of the (integer) coefficients
of the polynomial. The results of many tests support these conjectures without exception. (I
have not attempted proofs.)

Conjecture 1.

Let n = odd ;?trime,

andQ () = X ¢; % ;

i=1
&; = odd integer, and cj = positive integer or zero A=1,2 4055tk

Let C = szl Ci

Now considle—r the K-patterns for polynomial residues, in which r of Eq. (I.1) is replaced
by

k
rk =2 exp[i Q ()IT/n.
j=0

Then

if s is even, or s is odd and C is even,

symmetry = L, and period = n;

if s is odd and C is odd,

symmetry = d2, and period = 2n.
We define symmetry = L to mean that the symmetry is that of a lattice generated by two parallel
lines of reflection (perpendicular to the translation axis).

Conjecture 2.

Let n = odd prime,

t
andQ () = 2 ;™ g
i=1

®; = even integer, and cj = positive integer or zero (I=15255 00,1



t

LetC= 2 Cj.
1=1 5

Now again consider the K-patterns for polynomial residueé, in which r of Eq. (I.1) is replaced
k
rk = Zexp [i Q (NI /n.
j=0
Then
if sis even, or s is odd and C is even,
symmetry = L¥*, and period = n;
if s is odd and C is odd,
symmetry = C5, and period = 2n.
We define symmetry = L* to mean that the symmetry is that of a lattice generated by two half-

turns (their centers lying on the translation axis).



[II. Examples of pattern families

Among the several infinite families of K-patterns for which I have developed complete p-s
rules are the following:

A. jo=1; 1 <X <7;n,sare any positive integers.

For each of these seven sub-families, the p-s rules are somewhat too complicated for a brief
summary. In any event, both the execution time and precision for programs which implement them
are acceptable even on a personal computer operating in interpretive BASIC, without ASSEMBLER
subroutines to speed things up. There is, however, one qualification. Consider the case of cubic
residues (X = 3). When the p-s rules, as originally developed, predicted that a given <n, s> integer
pair corresponded to a pattern with lattice symmetry, it was sometimes found that the symmetry
was actually dj. The algorithm was then modified to accommodate such exceptions until no more
could be found. Subsequent testing has uncovered no further errors. For the cases X =5 and
® =7, I have not yet tested all of the analogous algorithm corrections. For & = 1, the problem
does not even arise. I have not yet examined this aspect of the cases X = 2, 4, and 6, but I intend
to do so when time permits.

B. o = odd integer > |

l. n=prime > (n,&)=1,andn¥ | (mod ).

a. 8§=1,3,0,,0e,0=2

period = 2n; (IT1. 1)
symmetry = dp.

b. s=2,4,6,...,n-1

period = n; (111.2)
symmetry = dj.
For both even and odd s, no two patterns are alike; hence there are n - | distinct

patterns.



2. n=prime >(n,x)=1,andn = | (mod & ).

8. 5=1:s3, 5, v yN=2

period = 2n; (I11.3)
symmetry = do.

b. s=2,4,6,...,n-1

period = n ; (I11.4)
symmetry = lattice (L).
For both even and odd s, each pattern occurs for &« different values of s; hence there are
only (n - 1)/ x distinct patterns.
Lett) (= 1), t2,..., ty =the « different integer oth roots of unity (mod 2n), i.e., the
integer solutions of the cyclotomic equation (mod 2n)
s* = 1(mod 2n) (I11.5)
Then if a given pattern occurs for s = s, it also occurs for
si=tis;(mod2n) (i=2,3...,%). (111.6)
C. n = square-free odd integer
=P1P2-+«Prj
K=pw W=ly2)eseyt)
jo=0;

s =1,2,...,n - 1.

Then

period = € n/(n, s), (111.7)
where

€ =1if siseven,
and (I11.8)

€ = 2 if s is odd;

symmetry = dg, (I11. 9)



where

10

.
q=€T" [pi/lp;, 93 (I11.10)
i=1

the product TT 'includes only those pi for which (pj - )| (pw - 1).

Eq. (III.10) was constructed after perusing the article by A.E. Livingston and M.L. Livingston:

"The congruence af * S = ar (mod m)" (Amer. Math. Monthly 85 (1978), pp. 97-100.

I have not proved the results expressed in Egs. (I1I.7-10). I have merely verified them for

a respectable number and variety of examples.

D. n=p3 (p=oddprime);

o= p;
jo=0.
I 81,3 550 00y p?

2.

period = 2p?; symmetry = dj. (I11.11)

Pattern consists of two distinct images of a design D with dp symmetry, plus hori-
zontal unit vectors (connecting lines) which join these two images. Each of the
rotational fundamental regions (pattern "motifs") of D is made up of p-1 unit vectors;
each image of this motif is rotated through the angle 2 (sp2 (mod 2 p3)) T /p3 with
respect to the previous image. Every pth unit vector of the pattern is a connecting
line; it is directed alternately to the left or right.

s=2,4,6,...,p2-1

period = p2; symmetry = lattice (L). (111.12)

A single translational cell of the pattern consists of p replicas of a motif comprising
p-1 unit vectors, plus p left-directed unit vectors (connecting lines). Each image of
this motif is rotated through the angle (sp2 (mod 2 p3)) T /p> with respect to the
previous image. Every pth unit vector (connecting line) is directed to the left, thereby
joining each image of the pattern motif to the next. The skeleton of each pattern is.

a prolate or curtate cycloid, depending on the magnitude of the resultant of the p-1 unit
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of the resultant of the p-1 unit vectors of the pattern motif.*
For this family of patterns, I have proved all of the described properties.
E. n=g2 (q=odd integer > 3 | q);
%= 3
s=q/22 (£=1,2,...)
io=k/2t (k=1,2,...,(q-1)/2)
period = 16 q {3;
symmetry = dq.
For { =1, the density of the skeletal star polygon (winding number) = 3k2 (mod q).
For each £, there are (q-1)/2 distinct patterns, corresponding to the (q -1)/2 allowed
values for jo.

For this family of patterns, I have proved all of the described properties.

F. n=gap2 ( p, g =odd primes # 3; (p,q) =1; o =3)
(i) s=2kp (1L£k <p-1)

period = qp; symmetry = dp; winding number = 3k (mod p).
(ii) s=kp (o€ k<p-1)

period = 2qp; symmetry = dzp; winding number = 3k(mod 2p).

G. n= qp3 (pa q = odd primes # 3: (p, q) = Tz~ 0= 3)
(i) s=2kp (1< k<p-1)
period = qu; Symmetr_y = Cp; winding number = 3k(m0d p)‘

(ii) s =kp (0€k<p-1)

2

period = 2qp“; symmetry = C2ps winding number = 3k(mod 2p).

*In some of these examples, the patterns are reminiscent of transformations seen in Fhe
graphic designs of M. Escher. Others are suggestive of M. Duchamp (e.g., "Nude Descending a
Staircase").
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IV. The implementation of color reflection symmetry in a K-pattern

The attractiveness of a K-pattern may be considerably enhanced if it is
drawn with two or more colors, especially if the resulting pattern has color
symmetry. If a monochromatic pattern has cyclic symmetry, then all the vectors
in any single replica of the pattern motif (rotational sector*) will be colored
alike. To the extent permitted by the number of colors in the palette, we will
require strict color symmetry: each rotational isometry of the monochromatic
pattern must permute the sector colors according to a self-consistent scheme.

Next consider the problem of expressing color reflection symmetry in
K-patterns whose symmetry group includes one or more ref]eéfion isometries. The
solution of this problem is effected by choosing a suitable integer value for jo
to replace the value 1 on which the p-s rules described in III.A (p. 8) were
based. Of course it is necessarylto insure that the pattern resulting from this
new value of jo is the same -- aside from color -- as the one generated with jo = 1.
The simplest way to guarantee this equivalence is to restrict jo to the set {1 + Zs}

(z=0,1,2, ...). Now let us specify coloring procedures for the various cases.

1. For K-patterns with d1 symmetry, we will use one color only.

2. For K-patterns whose symmetry is described by the lattice group L,
generated by two parallel reflections, %e.wi11 simplify this discussion (and also
the treatment of dihedral patterns whicﬁ follows) by defining K-patterns with either
d, symmetry (k>1) or lattice (L) symmetry to have property @ iff

a) the boundaries of each rotational sector or unit cell**

coincide with 1ines of reflection;
and
b) every pattern vector is assigned a single color.

-
*fundamental region of the rotation group of a centrosymmetric pattern.

**fyundamental region of the translation group of a lattice pattern.
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If the complexity* (cf. Theorem 6, p.5) of a lattice pattern is odd, and we
require the pattern to have property Q, then if the pattern is to express poly-
chromatic color reflection symmetry, the boundaries of the unit cell can be chosen
in only one way. The proof is trivial. (Cf. Fig. f on p. 16c.)

If the complexity of a lattice pattern is even, then we might imagine a prior:
that there are two possible cases:

(a) the unit cell includes no pattern vectors (let us call them
type V') which are parallel to the translation axis, and which
are bisected by a Tine of reflection;

(b) the unit cell includes one pair of pattern vectors of type V',
and each member of this pair is bisected b{/a differént one of
the two translationally inequivalent generating Tines of.
reflection.

In either of the cases (a) or .(b) just cited, there would be two complementary
choices for the boundaries of a unit cell - either two replicas (related by a unit
translational isometry) of one of the two generating lines of reflection, or else
two such replicas of the other generating 1ine of reflection.

I have found that among cubic K-patterns, there are no lattice patterns of
type L with even complexity which satisfy condition (a) (described immediately
above).** Accordingly, L patterns with even complexity cannot have property Q.

In order for such a pattern to express pgﬂychromatic color reflection symmetry,
it is sufficient to divide each vector of type V' into two collinear kalf - unit
vectors, assigning to each half the color shared by the unit vectors which belong

to the same unit cell. (Cf. Fig. d on p. 16b.)

*For both d1 and L patterns, we define sym = 1.

**] have not proved this assertion, but I have proved (cf. Appendix A) that
among K-patterns with {n, s> = {2”, even integer) (¥ =1, 2, 3,...), none satisfy
condition ga). I have alsg discovered, but not proved, that for this class of
patterns, ig the-complexity is even; and (ii) the symmetry is lattice (L) if

v# 0 (mod 3), and d; otherwise.
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3. For K-patterns with symmetry dk (k>2), we will color each replica of the
pattern motif (rotational sector) with a single color, beginning
and ending on unit vectors which are related by reflection in the mirror line
which bisects the sector.

I have found that when k is even, it is always possible for a dk pattern
which expresses color reflection symmetry to exhibit property Q. If the complexity
is even, there are two ways to accomplish this, corresponding to the two complemen-
tary choices for the boundaries of a rotational sector - either two replicas (related
by a unit rotational isometry R1 of the group of rotations of the pattern) of one
of the two generating lines of reflection, or else two such teplicas 6f the other
generating line of reflection. (Cf. Figs. a and b on p. 16a.)

When k is odd, on the other hand, I have found (but not proved) that the
situation for dk patterns is quite éna]ogous to that of the lattice patterns
described above: (i) If k is odd and the complexity is odd, there is always
exactly one way for the pattern to express polychromatic color reflection
symmetry and at the same time exhibit property Q (cf. Fig. e on p. 16¢c);

(ii) If k is odd and the complexity is even, property Q is
impossible; each rotational sector includes one pair of pattern vectors (we will
call them type V") which are perpendicularly bisected by Tines of reflection, and
each member of this pair is bisected by a/different one of the rotationally in-
equivalent 1lines of reflection. There are two complementary choices for the
boundaries of a rotational sector - either two replicas (related by a rotational
isometry R1 of the group of rotations of the pattern) of one of the two generating
lines of reflection, or else two such replicas of the other generating line of
reflection. (Cf. Fig. c on p. 16b.)

-
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The following table provides a summary of the sym-complexity parity classes
for solutions to the color reflection symmetry problem for cubic K-patterns.
Coloring is governed by the rules described in the immediately preceding paragraphs.

In the third column, C = complexity.

SYMMETRY SYM C PROPERTY Q? NO. OF SOLUTIONS

ed = 5 kk § k% .

a. dk (k even) even even y 22 Jg = 3g**s Jp*r t (C/2) s
//.

. T = 9 %%
b. dk (k even) even odd y 12 i = g

. s % .
c. d (k odd, 3) odd even n 2: 3y = dg*s Jp* t (C/2)-s
d. lattice (L) 1 even n 23 jo = jo*, jo* + (C/2)-s
e. dk (k odd) odd odd y 1z jo = jo**
f. lattice (L) 1 odd y 1: gy = Jg**

The solutions jo* and jo** are found by solving the congruences IV. 2 and

IV. 6 (cf. pp. 17-18), respectively.

Examples of these six parity classes are shown on the next three pages.
Simple patterns were chosen for these illustrations, so that the reader can verify
some of the remarks made above by coloring the patterns with two, three, or four

colors: two or four colors for a, two colors for b, three colors for c, two colors

for the two unit cells of d;.three colors for e, and two or three colors for the

not quite two unit cells of f.
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EXAMPLES OF
COLOR REFLECTION SYMMETRY

PARITY CLASSES FOR CUBIC K-PATTERNS

Q means that color reflection symmetry can be expressed without assigning
different colors to the separate halves of any pattern vector.

-Q means that color reflection symmetry is expressed by assigning different
colors to the separate halves of pattern vectors which are perpendicularly

bisected by an alternating subset of the lines of reflection symmetry.

a. n=28
s =6 _ /
symmetry - dys sym = 4
period = 8
complexity = 2
jo** =1or7
Q

(sym, complexity) = (even, even)

b. n=>5
s =1
symmetry = d2; sym = 2
period = 10

complexity = 5
.**=3
Jo
Q

(sym, comp]éxity) = (even, odd)



n
S

symmetry = d3; sym =

6
1

period = 12

complexity = 4

3o
-Q

n
S

*

=2o0ri4

16
5

3

(sym, complexity) = (odd, even)y

symmetry = lattice (L); sym = 1

period = 32

complexity = 32

\

-Q

= 16 or 96

\#

_etaeALE

(sym, complexity) = (1, even)

16b



16¢

n=15
s =4
symmetry = d3; sym = 3
period = 15
complexity = 5
jo** = 2
Q
(sym, complexity) = (odd, odd)
// ‘
n =13
s =6

symmetry = lattice (L); sym =1
period_= 13
complexity = 13

jo** = 3 v\/\/i\/\/v

Q

/sym, complexity) = (1, odd)

-
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Now let us address the prob1eﬁ of <mplementing color reflection symmetry
in a cubic K-pattern. There are two cases to be considered:

(i) the pattern does not have property Q; then

<sym, comp]exity> = <odd, even).
(ii) the pattern has property Q; then
{sym, complexity) = {even, even), {even, odd), or {odd, odd).

It is convenient to define sym = 1 for lattice patterns of type L, so that
they can properly be included among these four parity classes.

For case (i), let us define jo* to be the initial value of the pattern index,
i.e., the value of (jo* + sj) for j = 0. The pattern vector exp [i jO*OQW/n] is of
type V' or V', according to whether the symmetry is lattice‘or dihed?a];.it is
perpendicularly bisected by a Tine of reflection symmetry. In order for the K-pattern
to express polychromatic color reflection symmetry, the rear half of this pattern
vector will be assigned the same color (H) as the C-% unit vectors which immediately
precede it, while the forward half will be assigned the same color (H') as the C-%
unit vectors which immediately follow it. (H and H' need not necessarily be different
colors, depending on the specific group of color reflection isometries associated
with the pattern.) .Now let C = complexity. The jo* is a solution of

Lig* + ks]® - 3™ + L1, - ks1® - 30*3 = 0 (mod 2n); (Iv. 1)

I

k =0;1,25 04 4C/2:
If the 1.h.s. of Eq. IV.1 is to vanish idénticaﬂy for 0=k=<C/2, it is necessary that
6sjy*=0 (mod 2n). (Iv. 2)
In order to guarantee that the colored pqttern resulting from the choice
jO = jo* be the same (aside from color) as the monbchromatic pattern generated
by choosing jo = 1, we require that
jo* =1 ¥ s ATz 0, 1 i) LIV, 3)
Eqs. IV. 2 and IV. 3 yTeld the result
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3 2

6s°Z = -6s-  (mod 2n). : (Iv. 4)

This Tinear congruence has a unique solution mod (2n/(6s3, 2n)) if

(553, 2n) 652, and none otherwise.*

For case (ii), let us define jo** to be the initial value of the pattern

*

o
index, i.e., the value of (jo* + sj) for j = 0. The pattern vector exp (i jo**‘HVn]

is the first vector of a new rotational sector or unit cell. In order for the

K-pattern to express polychromatic color reflection symmetry, the next C-1

pattern vectors are assigned the same color H as this vector. The preceding

C pattern vectors are also assigned a single color H'. (H and H' need not

necessarily be different colors, depending on the specific group of color

reflection isometries associated with the pattern.) Then jo** is a solution of
Ligh + (k#1)s1® - Lg% + ks1® + [ig™ + (C-1)s - (k#1)s1% [ig™* + (C-1)s -ks]®
=0 (mod 2n); | (IV. 5)

max?
kmax = (C-3)/2 if C is odd;
k = (C-4)/2 if C is even.

In order that the 1.h.s. of IV. 5 vanish for 05I<Sl%ﬁx, it is necessary that
3s°[2jg** + (C-1)s]1=20 (mod 2n). (1v. 6)
Again we require --in order to guarantee that the colored pattern resulting

from the choice jo = jo** be the same (aside from color) as the monochromatic

pattern generated by choosjng jo =1 -- that

=l 42 (1% ' i N I - (1Iv. 7)
Substituting Eq. IV. 7 in Eq. IV. 6, we obtain
6s> Z=- 3s2[(C-1)s+2] (mod 2n). o (1V. 8)

*The Theory of Numbers, Emil Grosswald, Macmillan Co. (1966), pp. 46-47

-
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For most parameter sets, obtaining values for jo* and jo** from the search
algorithm based on Egs. IV. 2, 4, 6, 8, in the compiled BASIC program for cubic
K-patterns I have written for the IBM PC, requires at most 2-3 seconds of computa-
tion. Occasionally when n®1, the calculations take somewhat longer.

As an illustration of the use of Eq. IV. 8, consider the lattice pattern for
{n, s) =<13, 4> (parity class f). Complexity for this case = 13. From Eq. IV. 8,
we find that Z is a solution of the linear congruence

202=- 8 (mod 26). (Iv. 9)
Hence Z = 10, 23, 36, 49 ... From Eq. IV. 7, we obtain the result jo** = 15.

The cubic residues for j = jo**, jo**,+ S, jo** + 285 5o s jo** + (complexity - 1)s
are therefore

[21 21 25 1 21. . 1 13 25 5 25 1 5 5]

(0) (4) (2) (20) (6) (12) (12) (6) (20) (2) (4) (0)
The residue differences are given in the Tower row. It is easily verified that
these difference terms are symmetrically distributed about the center (13) of
the residue sequence. This is equivalent to the statement that changes in
direction between consecutive unit vectors are symmetrically distributed, i.e.,
that Tocally perfect color reflection symmetry will result if a particular
color is assigned to the unit vectors specified by this set of residues.

Now consider a second example: <}u sy = {64, 10) (parity class a). In
this case, the symmetry is d8’ and complexity = 8. Here, Z is a solution of the
linear congruence

1127= - 96 (mod 128). ' (Iv. 10)
Hence 7= 22, 54, 86 ... From Eq. IV. 7, jo** = 93 or 29. The cubic residues
for j = jo**, jo** o, jO** 2 B vass jo** + (complexity - 1)s (for either
value of jo**) are:

o

[5 119 81 3 125 47 9 123]

(114)  (90) (50) (122) (50) (90) (114) |
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It is easily verified in this case also that the difference terms are symmetrically
distributed ébout the center (3 - 125) of the residue sequence. Again this is
equivalent to the statement that the direction changes between consecutive pattern
vectors are symmetrical w1th respect to the color distribution,

To illustrate the use of Eq;AWEQ E_;354¥§ 4 toibbta1n a Jo* value for a
K-pattern which belongs to a parity class lacking the Q property, let us first
choose the example {n, s) = {6, 1), for which complexity = 4 and symmetry = d3
(parity class c¢). From Eq. IV. 4, Z is a solution of

6Z= -6 (mod 12). (Iv. 11)
Hence Z = 1, 3, 5,..., and jo* (from Eq. IV. 3) =2, 4, 6, ... If we choose
jo* = 4,v the cubic residues for jO* - 3s, jo* - 2s, jo* -s, jo*, jo* + s, jo* + 2s,
and jo* + 3s are:
[1 8 3 4 5 0 7]
| (7) (7) (1) (1) (7) (7)
the difference terms appear below.

F1na11y, consider {n, s} = {16, 5), comp]ex1ty 32 and symmetry = lattice (L)

(par1ty class d).
14Z= -22 (mod 32).

. From Eq. IV. 4, Z is a solution of

Hence Z = 3, 19, 35,..., and jO* (from Eq. IV. 3) = 16, 96, 176,...
If.we choose jo* = 96, the cubic residues for ... jo* - 3s, jo* - 2s, jo* - s,
Jo¥s Jo* * s Jg* t 25, gt + 35, ... are:
(... 17 24 3 0 29 8 15 ...]
(7) (11)(29)(29) (11)(7)...;
again, the difference terms appear below.
K-patterns for both this example and the previous one are included among

the illustrations of the sym-complexity parity classes on pp. 16a, b, and c.
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Because it allows the calculation of jO from a single formula, it appears
that Theorem 6 (p. 5) should be useful in the expression of color reflection
symmetry, for any K-pattern which satisfies either conditions (a) or (b) of
the theorem. Unfortunately, its usefulness is presently Timited by the absence
of complete information concerning the conditions under which a K-pattern based
on a jo value calculated from the theorem is the same (aside from color) as the
pattern obtained with jo = 1. Although I have not yet settled this question, it
should not be an excessively time-consuming task to obtain a reliable solution by
resorting to the same empirical methods I used earlier to determine the p-s rules
for K-patterns with 2<¢x<7 (cf. § III A, p. 8). )

When time permits, I will obtain such a solution. In/the meantime, I have
discovered, in the course of testing many examples with the aforementioned
computer program, only two exceptions (described immediately below) to the "rule"
which states that a value for jO obtained from Theorem 6, whenever the conditions
of the theorem are satisfied, gives the same pattern (aside from color) as does
jO =1, in spite of the fact that the value of jo obtained from Theorem 6 only
rarely belongs to the set of j-values {1 + Zs}.

These two exceptional cases are as follows:

Let Py and P, = odd primes# 3; (pl, p2) =1.

d6 patterns: ¢n, s) = (33p1, 3p2); fomplexity = py-

d; patterns: {n, s ='(33p1, 6p,>; complexity = Py

It is easy to verify (by substitution for n, s, and complexity in Eqs. II.
13 - 14) that Theorem 6a applies to the d6 patterns, and Theorem 6b to the d3
patterns. The patterns which result in each case from the use of a jo value
obtained from Theorem 6 also have complexity = Pys but the order of the

symmetry group in each casg is reduced by a factor of 3 as compared with the pattern

obtained with jO = 1.



On the following page are shown six simple examples of d6 patterns which
belong to the <33p1, 3p2> family described above. A search algorithm which
implements Eqs. IV. 6 and IV. 7 was used in the BASIC computer program to
obtain the Z (and therefrom jo**) values shown in the last column (although of

course these values can be computed very quickly by hand).

22



. 3
SIX EXAMPLES OF d. PATTERNS OF THE {3 pys 3p2> FAMILY

33 .

33

33

33.

33

f=}

5 =135

3= 135

©7 =189

11 = 297

11 =297

2]l = 297

|»

<11 =33

«13=39

<17 = 51

23

(3™ - 1)/s
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V. Lattice repeat distance for K-patterns with lattice'symmetry

Knowing nothing about the published literatrt;re on K-patterns, I héve no idea to what
extent any of the findings summarized in this note are already known*. Recalling several comments
made to me two years ago by Andrew Odlyzko, however, I suppose that much is already known (and
proved) concerning both cubic and quintic K-patterns, at least for the case jo = 0. I'm certain
Andrew mentioned that in the case of K-patterns with lattice symme‘gry, both for ol = 3 and o= 5,
expressions have been found (and also proved?) for the lattice repeat distance, i.e., the distance
between corresponding points of adjacent unit cells. I have not proved any results in this area, but
I offer the following (presumably well-known) conjectures based on observation.

A. For K-patterns with lattice symmetry of the type described in §B. 2b (p._ 9) (and I imagine
other types as well), the lattice repeat distance is independent of s. 7

B. For cubic K-patterns with lattice symmetry, for which n = 2" (v # 0(mod3); s=1; jo=1),
the lattice repeat distance = 25, where & = ¥ —int ( ¥ /3).

C. For cubic K-patterns with latticeAsymmetry, for which n = pv (p = odd prime > 3;
% -f_ 1 (mod 3); s = even integer < period 2 (s, p) = 1; jo = 1), the lattice repeat distance = p¥ - 1,

D. For cubic K-patterns with lattice symmetry, for which n = 3¥ (¥ # 1 (mod 3); s = even
integer < period 2 (s, 3) = I3 jo = 1), the lattice repeat distance = P-Bs ,where § = ¥ -2 -int
((» -1)/3), and

p=lifys= 0 (mod 3);

¢

/
For o =3 and s = even integer, the first 13 primes p of the form p = 1 (mod 3) (cf. §IIL. B.2

2cos(m/9) -1 if ¥ =2 (mod 3).

on p. 9) generate lattice patterns with repeat distances which exhibit the following apparently

irregular behavior:

*I originally discovered K-patterns as the aftermath (sic) of a typo made in the course of
keying in a computer program in a quite unrelated problem area. I like to think of this experience
as an example of what the late Max Delbruck used to call controlled sloppiness.
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prime =1 (mod 3) ‘ lattice repeat distance
7 4.406
13 6.953
19 5.855
31 10.252
37 7.561
43 9.665
61 13.358
67 14.947
73 13.454
» 79 7.325
97 19.620
103 4.661
109 ‘ 0.668

For a prime p for which the lattice repeat distance << p, the steady state form of the pattern
is not reached until several (overlapping) replicas of the unit cell have been drawn. Quite attractive
patterns sometimes result in these cases. (No examples illustrating this phenomenon are included

among the K-patterns illustrated in this note.)
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APPENDIX A

Proof that cubic K-patterns for which
{n, s) = (2%, odd jnteger) lack property Q

As stated in § IV, I have not proved that K-patterns which belong to the
sym-complexity parity classes c and d (cf. table on p. 15) lack property Q
(cf. p. 12). It is not difficult, however, to prove that for o« = 3, K-patterns
corresponding to certain sub-classes of the parity classes ¢ (odd-even) and
d (1-even) Tack property Q. These two sub-classes are defined by the parameter
set {n, s> ={2”, odd integery. I have found (but not proved) that for
patterns with this parameter set, ¥ '
(i) ifv=0 (mod 3), symmetry isdy, and complexity is even.

(i) if v#0 (mod 3), symmetry is L, and complexity is even.

n
[AS]
—~
b
n
—

v
n
-
w
-
N
-

Theorem: If n

g 51, 35 Bsuss 2n = 1,

ip = 1,
and
oL = 3,
then /
3  integer W (0<W<2n) »
(i) (1+Ws)3= 0 (mod 2n), . (A.1)

and

(1) [1+(W+k)s]3 - [1+Ws]3 = [1+Ws]3 - [1+(W-k)s]® (mod 2n) for all integer k. (A.2)

Eq. A.1 implies that the pattern vector V(W) = exp[i(1+sw)3v/n] is horizontal.

Eq. A.2 is the necessary and sufficient condition for the K-pattern for {n,s)
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to be symmetrical by reflection in a Tine which is the perpendicular bisector of

the pattern vector V(W).

Proof:

Remark:

It is trivial to prove that if

1+ Ws=0 (mod 2n), : (A.3)

then both Eqs. A.1 and A.2 are satisfied.

To prove that 3 a positive integer W<2n 2 Eq. A.3 is satisfied, it is
only necessary to invoke the elementary theorem on linear congruences
cited on p. 18. According to this theorem, sincé (s, 2n) = 1, Eq. A.3

vV+1

has a unique solution (mod 2n). Since s is odd, and 2n = 2 is even,

W is of the form
W=-s"14i.2n (i =1,2,3,...). (A.4)

That W<2n follows from the fact that W is odd and is a solution (mod 2n)

of the congruence A.3.

Note that for s' = s + 2n,

3

(1+Ws")3=/(1 + Ws)® (mod 2n). (A.5)

Hence it is not necessary to consider values of s>2n - 1.

-
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APPENDIX B

COLOR REFLECTION SYMMETRY FOR ALL ODD & > 3

Let us now examine the problem of color reflection symmetry for all odd
& > 3, both for patterns which have property Q and for those which do not (cf.
pp. 12-17).

1. K-patterns which do not have property Q

*
Let us simplify the notation slightly by writing jO instead of jO « Then

the analog of Eq. IV.1 for any odd o is
. 3.3,. 3.3
(Jo+ks) -Jg +(Jo-ks) =Jg = O (mod 2n); (B.1)
k =0,1,2,...,C/2. _ | (B.2)

Eqs. B.1-2 state that if the pattern vector for jo is perpendicularly bisected by

a line of reflection R, then the angle distribution for all vectors in the sector

is symmetrical by reflection in R. After cancelling terms in Eq. B.l, we obtain

(x-1)/2
2 2(;1) J'O(x—zj‘('ks)2i = 0 (mod 2n). (B.3)
i=]
Now if we let
P=g.c.d. (("2‘) (‘2) (0("11)) , | (B.4)
then
21'523'0 = 0 (mod 2n), for all odd ¢ > 3 (B.5)

is a sufficient condition for the congruence B.l to be satisfied. For of = 3,

Eq. B.5 yields Eq. IV.2, since for of = prime,
X
| () (B.6)

for 1 < k ¢ ®-1 (cf. p.32). It is almost certainly true that the congruence B.5
is also the necessary condition for Eq. B.1, but to prove that it is would require
invoking theorems on solutions of polynomial congruences with which I have a barely

nodding acquaintance.
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2. K-patterns which have property Q

Now consider the more complicated

angle A = angle B
problem of deriving the conditions for
A '
/
color reflection symmetry for K-patterns 7 e — R
I_/
for o > 3 which have the property Q (cf.
pp. 12 £ff.). In the sketch at the right, j0+Gs ”///4
a pair of consecutive pattern vectors and
j~t+Gs-ks
their images under reflection (in R) are . 0 \\\\N_q»
shown in one sector of a centrosymmetric ‘ jO+Gs—(k+l)s
K-pattern with dihedral symmetry and
property Q. The value of the pattern in-
dex j is indicated for representative

/
vectors. The direction of a vector with j0+(k+l)s N ¥ -—:i7~-‘
index j is j*T/n (mod 2n). jotks _,,/’/’_-. A

A
The polynomial congruence which ex— \\\

\
presses the necessary condition for color jO"\\\ﬁL \
reflection symmetry is equivalent to the
Statement that angle A = angle B. (Eq. | % B R

i \ P
IV.5 is the special case of this con-
gruence for o« = 3,) Now let G = C-1.
Then the equality of the angles A and B is expressed by setting
ZK(jO,G,s,k) = 0 (mod 2n), (B.7)
where
Zy = [j0+(k+l)s]&—[jo+ks]“+[jO+Gs—(k+l)s]“-[jO+Gs—ks]“ ; (B.8)

k =0,1,2,... ko0

(C-3)/2 if C is odd;

kmax

(C-4)/2 if C is even.



32

After expanding Eq. B.8 and then eliminating cancelled terms, we obtain

Zy =(]) s [(j0+ks)“‘1 {(jO+Gs)—ks}“"l]

+(3) %[ CigHe)™ ™2 + ((34+65)-ks)* 2]

+(%3) ”1CgHe) ™ = {(j4+65)-ks}* 3]

+(Z}sa[(j0+ks)u_4 + {(jO+Gs)—ks}u_4]

+(xfz)s“‘2[(j0+ks)2 - {(3g+Gs)—ks}?]

+(°(°_‘1) su_l[(jo+k8) + {( jO+Gs)—1<s} 1. (B.9)

If X is a prime, then each binomial coefficient (ﬁ)is divisible by &, for

1<k £ ®-1, according to an elementary theorem . Hence in this case, «|Z

A2

d.!
and we may conveniently write

_ 1
Z« = Z“

w

0 (mod 2n). (B.10)

For any odd &, not necessarily prime, let

o= e (1)), )

Then for every odd «, @lzm; we write
Zy = PZ’

O (mod 2n).

1

(B.12)

a2

wElements of Number Theory, K. Ireland and M. I. Rosen,

Bogden and Quigley,
Inc. (1972), p. 43
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For the first three non-prime odd ¢ -- 9, 15, and 21 -- p= 3, 1, and 1,

respec'tively_. When o is prime, P = .

Now let us express Zy and Z'a as follows:

Zy = Zo{,O + Z“,k (B.13)
and
v _ 7t '
Z« = Zot,O + Zot,k . (B.14)
1 . . ] .
Z“,O and Z «,0 are independent of k, while Z(x X and Z x,k 2re polynomials

in k. It can easily be proved from Eq'. B.9 that Z.“’k (and therefore also
Z'(x,k) is of degree ®-2.

I have derived expressions for Z X,0 (see below) for & =3, 5, 7, and 9.
I have so far obtained expressions for Z o,k only for ® = 3 and & = 5.
(The calculations for Z &,k when done by hand, become quite lengthy, beginning
with & = 7.)

For both & = 3 and « = 5, it is found that

2 v ’
Bs“(235%6s) | Z, . (B.15)
For all four of these cases —— ® = 3, 5, 7, and 9 ——
24n.q '
Bs“(2jy+Gs) | Z X,0 * (B.16)
A plausible conjecture seems to be that
@s2(2j0+cs) | Z, for all odd & > 3. (B.17)

If Eq. B.17 is correct, then a sufficient condition for Eq. B.7 is

§82(2j0+GS) = 0 (mod 2n), for all odd « > 3. (B.18)




x = 3
Zy o = 3s2(2j0+cs){1-c} ;
Zg = 357 (2g#Gs){2k ) .
x =5
Zg o = 55°(25g#Cs){(1-6)[ 23, (34+6s)+(1-G+6%)s 2]} -
5,0 Jo Jo*Jo ;
Zs 4 = 552(2j0+Gs){k[2(2jo(jO+Gs)+(2—3G+2G2)52)]
H2[6(1-6)s*]
+k3[4s2]}.
x =7

2, 4
Zy o = 7 (2JO+GS){3(1+G)JO
+(1-6) [6Gs >
+(7G2—5G+5)s2j02

+G(4G2—5G+5)s3j0

G N

+(6*-2634+3¢ -2G+1)s4]} -

27 & = polynomial in k of degree 5, which includes terms in
9

k, k2, k3, ka, and kS.

34

and Zo( are as follows:

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)
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2, B
Zg o = 38 (2JO+GS){(1—G)[12JO

+36Gs ],

+6(11G2-7G+7)s2j04

+12G(6G2—7G+7)s3j03

3 2 2

+4(126*-2163-280 ~146+7)s% 5,

+2G(9G4—21G3+35G2—28G+1A)ssjo

5 4 3

+196%-23¢G 2

+(960-9¢ -19G -19G+3)s6]}. (B.25)

29 K = polynomial in k of degree 7, which includes terms in
3

ky k2, K3, k4, 13, K5, and K. | (B.26)

It is obviously desirable that the algorithm used to express color
reflection symmetry be as simple as possible, in order to maximize program
execution speed. If it can be proved that the linear congruence of Eq. B.18

provides valid solutions for jO for all odd &, then the time required

to search for a proper Z value for any K-pattern with a reasonable value for
complexity (C 2‘1000) will never be excessively long. Using a compiled .
version of the IBM PC program for cubic K—patferns, I have found that with a :
search algorithm which tests consecutive Z values 0,1,2,... until one is found
which satisfies Eq. IV.8, the search time per Z value is less than 80 msec.
Consequently, even if more than 100 candidate values are tested before a

solution is found, the search time never exceeds 8 seconds.
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Finally, consider the extension of Theorems 6a and 6b to all o 2 3.
Let us assume that Eq. B.18 is the correct statement of the necessary
condition for color reflection symmetry. Then we conclude that color

reflection symmetry results if either

a) n and s are both even or both odd,
?sz(n+Cs) = 0 (mod 2n),

and jO = (n+s)/2; | (B.27)

or b) s is even,
@sBC = 0 (mod 2n),

and j, = s/2. (B.28)

Still unresolved, however, is the problem of specifying which
K-patterns, for any given value of &, are geometrically the same -- aside
from color — whether they are computed with jo = 1 or with jo = a value

obtained from Eqs. B.27-28.



