(copied from pp. A-358-359 of the AMS Notices for April, 1978)

Geometry (50, 52, 53)

78T-D7
Alan H. Schoen, Southern Illinois University, Carbondale, Illinois 62901. Penrose SUN and STAR patterns Preliminary report.

The Penrose SUN and STAR patterns are described by Martin Gardner (Sci. Amer. 236, No. 1, Jan., 1977, pp. 110-121) as the two infinite patterns, composed of kites and darts, which are generated "if you add pieces [to the SUN or STAR] so that pentagonal symmetry is always preserved". The following algorithm defines a recursive scheme for constructing either SUN or STAR pattern, given a central core for the pattern. Algorithm: Define C_{n} (n is a positive integer), a simply connected region tiled with kites and darts, which satisfies: (i) the tiling in C_{n} has D_{5} symmetry; (ii) C_{n} is enclosed by a cyclic chain of five worm-segments $p_{n}(i, i+1)\left(i=1,2, . ., 5\right.$ in modulo 5 arithmetic, both here and below) whose long axes coincide respectively with the edges $u_{n}(i, i+1)$ of a regular pentagon P_{n} whose vertices are numbered consecutively from 1 to n; (iii) along the edges $v_{n}(i-1, i+1)$ of a regular pentagram Q_{n}, inscribed in P_{n}, lie the long axes of five worm segments $q_{n}(i-1, i+1)$; (iv) the tiling in each "triangular" domain $T_{n}(i)$, which is enclosed by $p_{n}(i, i+1), q_{n}(i-1, i+1)$, and $q_{n}(i-2, i)$, is related by reflection in $v_{n}(i-1, i+1)$ to the tiling in a congruent domain. To expand the pattern, reflect C_{n} and the four $p_{n}(j, j+1)$ for which $j \neq i$, in $u_{n}(i, i+1)$; define vertex i of P_{n+1} as the image of vertex $i+2$ of P_{n} obtained by reflection in $u_{n}(i-1, i)$; define $u_{n}(i, i+1, i)$ as the image of $u_{n}(i-1, i)$ obtained by reflection in $u_{n}(i, i+1)$; the tiling in the $\operatorname{gap} g_{n}(i, i+1)$ at the center of each $p_{n+1}(i, i+1)$ and also in the contiguous gap $G_{n}(i, i+1)$ is related by reflection in $\mathrm{u}_{\mathrm{n}}^{*}(\mathrm{i}, \mathrm{i}+1 ; \mathrm{i}-1, \mathrm{i})$ to the tiling in a congruent domain. Corollary: The sequential arrangement of long (L) and short (S) bow-ties in the skeletal worm segments described above is given by:

$$
\begin{array}{llllll}
p_{n}=p_{n-1} & L q_{n-2} L p_{n-1}, \text { and } q_{n}=q_{n-1} & L p_{n-1} & L q_{n-1} & \text { (STAR pattern); } \\
p_{n}=p_{n-1} & q_{n-2} & p_{n-1}, \text { and } q_{n}=q_{n-1} & p_{n-1} & q_{n-1} & \text { (SUN pattern); }
\end{array}
$$

