## 1. Sine expansion of tangent.

Let $n=2 m+1$ be odd. The system of equations:

$$
\begin{aligned}
\sigma_{2}(n) & =1 \\
\sigma_{2}(n)+\sigma_{4}(n) & =0 \\
\sigma_{4}(n)+\sigma_{6}(n) & =0 \\
\sigma_{6}(n)+\sigma_{8}(n) & =0 \\
\vdots & \\
\sigma_{m-1}+\sigma_{m}(n) & =0 \\
\sigma_{1}(n)+\sigma_{3}(n) & =0 \\
\sigma_{3}(n)+\sigma_{5}(n) & =0 \\
\sigma_{5}(n)+\sigma_{7}(n) & =0
\end{aligned}
$$

has the solutions:
(a) if $n \equiv 1(\bmod 4)$ then

$$
\begin{aligned}
& \sigma_{2 \ell}(n)=(-1)^{\ell+1} \quad \text { for } \quad 1 \leq \ell \leq(n-1) / 4 \\
& \sigma_{2 \ell+1}(n)=(-1)^{\ell+1} \quad \text { for } \quad 0 \leq \ell \leq(n-5) / 4 \text {. }
\end{aligned}
$$

(b) if $n \equiv 3(\bmod 4)$ then

$$
\begin{aligned}
\sigma_{2 \ell}(n) & =(-1)^{\ell+1} & \text { for } & 1 \leq \ell \leq(n-3) / 4 \\
\sigma_{2 \ell+1}(n) & =(-1)^{\ell} & \text { for } & 0 \leq \ell \leq(n-3) / 4 .
\end{aligned}
$$

Theorem. For $\sigma_{k}(n)$ as above:

$$
\frac{1}{2} \tan (\pi / n)=\sum_{k=1}^{m} \sigma_{k}(n) \sin (k \pi / n)
$$

Proof. Let $w=e^{\pi i / n}$ and let $A$ be the right-hand side of the identity. Then

$$
2 i A=\sum_{k=1}^{m} \sigma_{k}(n)\left(w^{k}-w^{-k}\right) .
$$

Multiply by $w+w^{-1}$ :

$$
\begin{aligned}
\left(w+w^{-1}\right) 2 i A & =\sum_{k=1}^{m} \sigma_{k}(n)\left(w^{k+1}+w^{k-1}-w^{-(k-1)}-w^{-(k+1)}\right) \\
& =\frac{1}{w^{m+1}} \sum_{k=1}^{m} \sigma_{k}(n)\left(w^{k+m+2}+w^{k+m}-w^{m-k+2}-w^{m-k}\right) \\
& =\frac{1}{w^{m+1}}\left[\sigma_{m}(n) w^{n+1}+\sigma_{m-1}(n) w^{n}+\sum_{k=1}^{m-2}\left(\sigma_{k}(n)+\sigma_{k+2}(n)\right) w^{m+k+2}\right. \\
& +\sigma_{2}(n)\left(w^{m+2}-w^{m}\right) \\
& \left.-\sum_{k=1}^{m-2}\left(\sigma_{k}(n)+\sigma_{k+2}(n)\right) w^{m-k}-\sigma_{m-1}(n) w-\sigma_{m}(n)\right] \\
& =\left[\sigma_{m}(n) w^{n+1}+\sigma_{m-1}(n) w^{n}+w^{m+2}-w^{m}-\sigma_{m-1}(n) w-\sigma_{m}(n)\right] / w^{m+1}
\end{aligned}
$$

where we used the system of equations given above. Now $w^{n}=-1, w^{n+1}=-w$ and $\sigma_{m-1}(n)+\sigma_{m}(n)=0$ so that

$$
\sigma_{m}(n) w^{n+1}+\sigma_{m-1}(n) w^{n}-\sigma_{m-1}(n) w-\sigma_{m}(n)=0 .
$$

Hence

$$
\left(w+w^{-1}\right) 2 i A=\left(w^{m+2}-w^{m}\right) / w^{m+1}=w-w^{-1},
$$

and so

$$
A=\frac{1}{2 i} \frac{w-w^{-1}}{w+w^{-1}}=\frac{1}{2} \tan (\pi / n) .
$$

## 2. A formula for the minimal polynomial of $2 \cos (2 \pi / r)$.

Notice the two extra 2's in $\mathbf{2} \cos (\mathbf{2} \pi / r)$.
It is simpler (for me) to work with the Dickson polynomials $D_{n}(x)=2 T_{n}(x / 2)$, where $T_{n}$ is the Chebyshev polynomial of the first kind (i.e. $\cos (n \theta)=T_{n}(\cos \theta)$ ). The Dickson polynomials may be quickly computed from

$$
\begin{aligned}
D_{0}(x) & =2 \\
D_{1}(x) & =x \\
D_{n+2}(x) & =x D_{n+1}(x)-D_{n}(x) .
\end{aligned}
$$

The Dickson polynomials have some algebraic advantages: they are monic (leading coefficient is 1 ) and satisfy

$$
D_{n}\left(x+x^{-1}\right)=x^{n}+x^{-n} .
$$

In fact, $D_{n}(x)$ is the unique monic polynomial of degree $n$ that satisfies this identity.
I will also use the cyclotomic polynomials $Q_{n}(x)$, the minimal polynomials of $e^{2 \pi i / n}$. The roots of $Q_{n}(x)$ are precisely the primitive $n$th roots of unity. If $w$ is a primitive $n$th root of unity then so is $1 / w$, and so $1 / w$ is also a root. This means that $Q_{n}(x)$ is self-reciprocal ,that is, has the form:
$a_{0} x^{2 d}+a_{1} x^{2 d-1}+\cdots+a_{d-2} x^{d+2}+a_{d-1} x^{d+1}+a_{d} x^{d}+a_{d-1} x^{d-1}+a_{d-2} x^{d-2}+\cdots+a_{1} x+a_{0}$,
where $d=\varphi(n) / 2$. Note that $a_{0}=1$.
Theorem. Suppose $r \geq 3$. Set $d=\varphi(r) / 2$. Write

$$
Q_{r}(x)=a_{d} x^{d}+\sum_{j=0}^{d-1} a_{j}\left(x^{2 d-j}+x^{j}\right)
$$

Then the minimal polynomial of $2 \cos (2 \pi / r)$ is

$$
P_{r}^{D}(x)=a_{d}+\sum_{j=0}^{d-1} a_{j} D_{d-j}(x)
$$

Proof. Set $w=e^{2 \pi i / r}$. Compute:

$$
\begin{aligned}
w^{d} P_{r}^{D}\left(w+w^{-1}\right) & =w^{d}\left[a_{d}+\sum_{j=0}^{d-1} a_{j} D_{d-j}\left(w+w^{-1}\right)\right] \\
& =w^{d}\left[a_{d}+\sum_{j=0}^{d-1} a_{j}\left(w^{d-j}+w^{-(d-j)}\right)\right] \\
& =a_{d} w^{d}+\sum_{j=0}^{d-1} a_{j}\left(w^{2 d-j}+w^{j}\right) \\
& =Q_{r}(w)=0
\end{aligned}
$$

The leading term of $P_{r}^{D}$ comes form the $j=0$ term, $a_{0} D_{d}(x)=x^{d}+\cdots$. In particular, $P_{r}^{D}$ is monic of degree $d$ and hence the minimal polynomial of $w+w^{-1}=2 \cos (2 \pi / r)$.

As a simple example (using MAPLE):

$$
Q_{60}(x)=x^{16}+x^{14}-x^{10}-x^{8}-x^{6}+x^{2}+1
$$

Thus the minimal polynomial of $2 \cos (2 \pi / 60)$ is

$$
P_{60}^{D}(x)=-1+D_{8-0}(x)+D_{8-2}(x)-D_{8-6}(x) .
$$

And

$$
\begin{aligned}
& D_{2}(x)=x^{2}-2 \\
& D_{6}(x)=x^{6}-6 x^{4}+9 x^{2}-2 \\
& D_{8}(x)=x^{8}-8 x^{6}+20 x^{4}-16 x^{2}+2 .
\end{aligned}
$$

Hence

$$
P_{60}^{D}(x)=x^{8}-7 x^{6}+14 x^{4}-8 x^{2}+1
$$

To get a minimal polynomial of $\cos (2 \pi / r)$ we take:

$$
\begin{aligned}
P_{r}^{T}(x)=P_{r}^{D}(2 x) & =a_{d}+\sum_{j=0}^{d-1} a_{j} D_{d-j}(2 x) \\
& =a_{d}+2 \sum_{j=0}^{d-1} a_{j} T_{d-j}(x)
\end{aligned}
$$

Again $T_{n}(x)$ is the Chebyshev polynomial of the first kind and we used $D_{n}(2 x)=2 T_{n}(x)$. $P_{r}^{T}$ is not monic so it is (technically) not the minimal polynomial of $\cos (2 \pi / r)$, but a scalar multiple of the minimal polynomial.

Lastly, to get a (scalar multiple) of the minimal polynomial of $\cos (\pi / n)$ simply take $P_{r}^{T}$ for $r=2 n$. It helps to know that, if $n$ is odd, then $Q_{2 n}(x)=Q_{n}(-x)$.

## 3. The case $n$ is prime.

When $n$ is an odd prime we get two different expressions for the minimal polynomial of $\cos (\pi / n)$.

We use the Chebyshev polynomials of the second kind $U_{t}(x)$, where $\sin ((t+1) \theta)=$ $U_{t}(\cos \theta) \sin \theta$. The sine expansion of tangent becomes (here $n=2 m+1$ ):

$$
\begin{aligned}
\frac{1}{2} \tan (\pi / n) & =\sum_{k=1}^{m} \sigma_{k}(n) \sin (k \pi / n) \\
\frac{1}{2} \frac{\sin \pi / n}{\cos \pi / n} & =\sum_{k=1}^{m} \sigma_{k}(n) U_{k-1}(\cos \pi / n) \sin \pi / n \\
1 & =2 \cos (\pi / n) \sum_{k=1}^{m} \sigma_{k}(n) U_{k-1}(\cos \pi / n)
\end{aligned}
$$

Hence $\cos (\pi / n)$ is a root of

$$
F_{n}^{1}(x)=-1+2 x \sum_{k=1}^{m} \sigma_{k}(n) U_{k-1}(x)
$$

As $\operatorname{deg} F_{n}^{1}=m=(n-1) / 2$, this is (a scalar multiple of) the minimal polynomial. For the second formula,

$$
Q_{2 n}(x)=Q_{n}(-x)=\sum_{j=0}^{n-1}(-1)^{j} x^{j}
$$

Hence $\cos (\pi / n)$ is a root of

$$
F_{n}^{2}(x)=(-1)^{m}+2 \sum_{j=1}^{m}(-1)^{m-j} T_{j}(x)
$$

When $n \equiv 3,5(\bmod 8), F_{n}^{1}(x)=F_{n}^{2}(x)$ and when $n \equiv \pm 1(\bmod 8)$ then $F_{n}^{1}(x)=$ $-F_{n}^{2}(x)$.

As a simple example:

$$
\begin{aligned}
F_{13}^{1} & =-1+2 x\left(-U_{0}+U_{1}+U_{2}-U_{3}-U_{4}+U_{5}\right) \\
& =64 x^{6}-32 x^{5}-80 x^{4}+32 x^{3}+24 x^{2}-6 x-1
\end{aligned}
$$

$$
\begin{aligned}
F_{13}^{2} & =1+2\left(-T_{1}+T_{2}-T_{3}+T_{4}-T_{5}+T_{6}\right) \\
& =64 x^{6}-32 x^{5}-80 x^{4}+32 x^{3}+24 x^{2}-6 x-1 .
\end{aligned}
$$

This equality can (probably) be proven directly. For instance, for any $n$ (prime or not)

$$
x\left(U_{n-1}-U_{n}-U_{n+1}+U_{n+2}\right)=-T_{n}+T_{n+1}-T_{n+2}+T_{n+3} .
$$

