1. Sine expansion of tangent.

Let n = 2m + 1 be odd. The system of equations:

$$\sigma_2(n) = 1$$

$$\sigma_2(n) + \sigma_4(n) = 0$$

$$\sigma_4(n) + \sigma_6(n) = 0$$

$$\sigma_6(n) + \sigma_8(n) = 0$$

$$\vdots$$

$$\sigma_{m-1} + \sigma_m(n) = 0$$

$$\sigma_3(n) + \sigma_5(n) = 0$$

$$\sigma_5(n) + \sigma_7(n) = 0$$

$$\vdots$$

has the solutions:

(a) if $n \equiv 1 \pmod{4}$ then

$$\sigma_{2\ell}(n) = (-1)^{\ell+1}$$
 for $1 \le \ell \le (n-1)/4$
 $\sigma_{2\ell+1}(n) = (-1)^{\ell+1}$ for $0 \le \ell \le (n-5)/4$.

(b) if $n \equiv 3 \pmod{4}$ then

$$\sigma_{2\ell}(n) = (-1)^{\ell+1}$$
 for $1 \le \ell \le (n-3)/4$
 $\sigma_{2\ell+1}(n) = (-1)^{\ell}$ for $0 \le \ell \le (n-3)/4$.

Theorem. For $\sigma_k(n)$ as above:

$$\frac{1}{2}\tan(\pi/n) = \sum_{k=1}^{m} \sigma_k(n)\sin(k\pi/n).$$

Proof. Let $w = e^{\pi i/n}$ and let A be the right-hand side of the identity. Then

$$2iA = \sum_{k=1}^{m} \sigma_k(n)(w^k - w^{-k}).$$

Multiply by $w + w^{-1}$:

$$(w+w^{-1})2iA = \sum_{k=1}^{m} \sigma_{k}(n)(w^{k+1} + w^{k-1} - w^{-(k-1)} - w^{-(k+1)})$$

$$= \frac{1}{w^{m+1}} \sum_{k=1}^{m} \sigma_{k}(n)(w^{k+m+2} + w^{k+m} - w^{m-k+2} - w^{m-k})$$

$$= \frac{1}{w^{m+1}} \left[\sigma_{m}(n)w^{n+1} + \sigma_{m-1}(n)w^{n} + \sum_{k=1}^{m-2} (\sigma_{k}(n) + \sigma_{k+2}(n))w^{m+k+2} + \sigma_{2}(n)(w^{m+2} - w^{m}) - \sum_{k=1}^{m-2} (\sigma_{k}(n) + \sigma_{k+2}(n))w^{m-k} - \sigma_{m-1}(n)w - \sigma_{m}(n) \right]$$

$$= [\sigma_{m}(n)w^{n+1} + \sigma_{m-1}(n)w^{n} + w^{m+2} - w^{m} - \sigma_{m-1}(n)w - \sigma_{m}(n)]/w^{m+1}$$

where we used the system of equations given above. Now $w^n = -1$, $w^{n+1} = -w$ and $\sigma_{m-1}(n) + \sigma_m(n) = 0$ so that

$$\sigma_m(n)w^{n+1} + \sigma_{m-1}(n)w^n - \sigma_{m-1}(n)w - \sigma_m(n) = 0.$$

Hence

$$(w+w^{-1})2iA = (w^{m+2}-w^m)/w^{m+1} = w-w^{-1},$$

and so

$$A = \frac{1}{2i} \frac{w - w^{-1}}{w + w^{-1}} = \frac{1}{2} \tan(\pi/n).$$

2. A formula for the minimal polynomial of $2\cos(2\pi/r)$.

Notice the two extra 2's in $2\cos(2\pi/r)$.

It is simpler (for me) to work with the *Dickson polynomials* $D_n(x) = 2T_n(x/2)$, where T_n is the Chebyshev polynomial of the first kind (i.e. $\cos(n\theta) = T_n(\cos\theta)$). The Dickson polynomials may be quickly computed from

$$D_0(x) = 2$$

 $D_1(x) = x$
 $D_{n+2}(x) = xD_{n+1}(x) - D_n(x)$.

The Dickson polynomials have some algebraic advantages: they are monic (leading coefficient is 1) and satisfy

$$D_n(x + x^{-1}) = x^n + x^{-n}.$$

In fact, $D_n(x)$ is the unique monic polynomial of degree n that satisfies this identity.

I will also use the cyclotomic polynomials $Q_n(x)$, the minimal polynomials of $e^{2\pi i/n}$. The roots of $Q_n(x)$ are precisely the primitive nth roots of unity. If w is a primitive nth root of unity then so is 1/w, and so 1/w is also a root. This means that $Q_n(x)$ is self-reciprocal, that is, has the form:

$$a_0x^{2d} + a_1x^{2d-1} + \dots + a_{d-2}x^{d+2} + a_{d-1}x^{d+1} + a_dx^d + a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \dots + a_1x + a_0$$

where $d = \varphi(n)/2$. Note that $a_0 = 1$.

Theorem. Suppose $r \geq 3$. Set $d = \varphi(r)/2$. Write

$$Q_r(x) = a_d x^d + \sum_{j=0}^{d-1} a_j (x^{2d-j} + x^j).$$

Then the minimal polynomial of $2\cos(2\pi/r)$ is

$$P_r^D(x) = a_d + \sum_{j=0}^{d-1} a_j D_{d-j}(x).$$

Proof. Set $w = e^{2\pi i/r}$. Compute:

$$w^{d}P_{r}^{D}(w+w^{-1}) = w^{d} \left[a_{d} + \sum_{j=0}^{d-1} a_{j}D_{d-j}(w+w^{-1}) \right]$$

$$= w^{d} \left[a_{d} + \sum_{j=0}^{d-1} a_{j}(w^{d-j} + w^{-(d-j)}) \right]$$

$$= a_{d}w^{d} + \sum_{j=0}^{d-1} a_{j}(w^{2d-j} + w^{j})$$

$$= Q_{r}(w) = 0.$$

The leading term of P_r^D comes form the j=0 term, $a_0D_d(x)=x^d+\cdots$. In particular, P_r^D is monic of degree d and hence the minimal polynomial of $w+w^{-1}=2\cos(2\pi/r)$. \square

As a simple example (using MAPLE):

$$Q_{60}(x) = x^{16} + x^{14} - x^{10} - x^8 - x^6 + x^2 + 1.$$

Thus the minimal polynomial of $2\cos(2\pi/60)$ is

$$P_{60}^D(x) = -1 + D_{8-0}(x) + D_{8-2}(x) - D_{8-6}(x).$$

And

$$D_2(x) = x^2 - 2$$

$$D_6(x) = x^6 - 6x^4 + 9x^2 - 2$$

$$D_8(x) = x^8 - 8x^6 + 20x^4 - 16x^2 + 2.$$

Hence

$$P_{60}^D(x) = x^8 - 7x^6 + 14x^4 - 8x^2 + 1.$$

To get a minimal polynomial of $\cos(2\pi/r)$ we take:

$$P_r^T(x) = P_r^D(2x) = a_d + \sum_{j=0}^{d-1} a_j D_{d-j}(2x)$$
$$= a_d + 2\sum_{j=0}^{d-1} a_j T_{d-j}(x).$$

Again $T_n(x)$ is the Chebyshev polynomial of the first kind and we used $D_n(2x) = 2T_n(x)$. P_r^T is not monic so it is (technically) not the minimal polynomial of $\cos(2\pi/r)$, but a scalar multiple of the minimal polynomial.

Lastly, to get a (scalar multiple) of the minimal polynomial of $\cos(\pi/n)$ simply take P_r^T for r = 2n. It helps to know that, if n is odd, then $Q_{2n}(x) = Q_n(-x)$.

3. The case n is prime.

When n is an odd prime we get two different expressions for the minimal polynomial of $\cos(\pi/n)$.

We use the Chebyshev polynomials of the second kind $U_t(x)$, where $\sin((t+1)\theta) = U_t(\cos\theta)\sin\theta$. The sine expansion of tangent becomes (here n = 2m + 1):

$$\frac{1}{2}\tan(\pi/n) = \sum_{k=1}^{m} \sigma_k(n)\sin(k\pi/n)$$

$$\frac{1}{2}\frac{\sin \pi/n}{\cos \pi/n} = \sum_{k=1}^{m} \sigma_k(n)U_{k-1}(\cos \pi/n)\sin \pi/n$$

$$1 = 2\cos(\pi/n)\sum_{k=1}^{m} \sigma_k(n)U_{k-1}(\cos \pi/n).$$

Hence $\cos(\pi/n)$ is a root of

$$F_n^1(x) = -1 + 2x \sum_{k=1}^m \sigma_k(n) U_{k-1}(x).$$

As deg $F_n^1 = m = (n-1)/2$, this is (a scalar multiple of) the minimal polynomial. For the second formula,

$$Q_{2n}(x) = Q_n(-x) = \sum_{j=0}^{n-1} (-1)^j x^j.$$

Hence $\cos(\pi/n)$ is a root of

$$F_n^2(x) = (-1)^m + 2\sum_{j=1}^m (-1)^{m-j} T_j(x).$$

When $n \equiv 3, 5 \pmod 8$, $F_n^1(x) = F_n^2(x)$ and when $n \equiv \pm 1 \pmod 8$ then $F_n^1(x) = -F_n^2(x)$.

As a simple example:

$$F_{13}^{1} = -1 + 2x(-U_0 + U_1 + U_2 - U_3 - U_4 + U_5)$$

= $64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1$

$$F_{13}^2 = 1 + 2(-T_1 + T_2 - T_3 + T_4 - T_5 + T_6)$$

= $64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1$.

This equality can (probably) be proven directly. For instance, for any n (prime or not)

$$x(U_{n-1} - U_n - U_{n+1} + U_{n+2}) = -T_n + T_{n+1} - T_{n+2} + T_{n+3}.$$